The Third Pole: How Climate Change is Changing the Himalayas

image from wikipedia

Though the amount of ice on the plateau of Tibet and its surrounding mountains, such as the Himalayas, Karakoram and Pamirs, is a lot smaller than that at the poles, it is still huge. The area’s 46,000 glaciers cover 100,000 square kilometres (40,000 square miles)—about 6% of the area of the Greenland ice cap. Another 1.7m square kilometres is permafrost, which can be up to 130 metres deep. That is equivalent to 7% of the Arctic’s permafrost. Unlike the ice at the poles, the fate of this ice affects a lot of people directly. The area is known by some as Asia’s water tower, because it is the source of ten of the continent’s biggest rivers. About 1.5 billion people, in 12 countries, live in the basins of those rivers. Welcome, then, to the Earth’s “Third Pole”.

Until recently studies of the Third Pole were piecemeal—not surprising, given its remoteness, the altitude, the harsh weather and the fact that little love is lost between the countries among which it is divided. In 2009, however, Yao Tandong of the Institute of Tibetan Plateau Research, in Beijing, Lonnie Thompson of the Ohio State University and Volker Mosbrugger of the Senckenberg World of Biodiversity, in Frankfurt, started an international programme involving these countries, called the Third Pole Environment (TPE). Last month, its fourth workshop met in Dehradun, India.

One question on everyone’s mind is whether the glaciers are retreating, as is happening in parts of the real polar regions. The Intergovernmental Panel on Climate Change’s report in 2007 foolishly suggested that the Himalayas’ glaciers could disappear as early as 2035. Given the amount of ice they contain, it would take weather gods armed with blow torches to melt them that quickly, and this suggestion was rapidly discredited…..

One outcome of the workshop, then, has been to establish that the overall ice cover of the Third Pole, like that of the two real poles, is shrinking. Another is to show how precarious and piecemeal data about the area are. Its role as the source of so many rivers means that absence of data matters. The Chinese Academy of Sciences, of which both Dr Yao’s and Dr Wu’s institutes are part, has therefore set up a fund of 400m yuan ($65m) for research on the Third Pole and, crucially, a quarter of this is earmarked for work outside China.

The TPE’s researchers will now monitor a set of bellwether glaciers every six months. They will set up observatories to measure solar radiation, snowfall, meltwater and changes in the soil, as well as air temperature, pressure, humidity and wind. And they plan to take cores from the ice on the Tibetan plateau. These will let them reconstruct the area’s climate over the past few hundred thousand years. Together, these data will give them a better grip on how much—and why—the Third Pole is changing.

The climate of Tibet: Pole-land, Economist,, May 11, 2013,  at 84

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s