Monthly Archives: April 2018

Stopping the Unstoppable: undersea nuclear torpedoes

Loads sonar buoys into a P-3 Orion, 2006 image from wikipedia

On July 20th 1960, a missile popped out of an apparently empty Atlantic ocean. Its solid-fuel rocket fired just as it cleared the surface and it tore off into the sky. Hours later, a second missile followed. An officer on the ballistic-missile submarine USS George Washington sent a message to President Dwight Eisenhower: “POLARIS—FROM OUT OF THE DEEP TO TARGET. PERFECT.” America had just completed its first successful missile launch of an intercontinental ballistic missile (ICBM) from beneath the ocean. Less than two months later, Russia conducted a similar test in the White Sea, north of Archangel.

Those tests began a new phase in the cold war. Having ICBMs on effectively invisible launchers meant that neither side could destroy the other’s nuclear arsenal in a single attack. So by keeping safe the capacity for retaliatory second strikes, the introduction of ballistic-missile submarines helped develop the concept of “mutually assured destruction” (MAD), thereby deterring any form of nuclear first strike. America, Britain, China, France and Russia all have nuclear-powered submarines on permanent or near permanent patrol, capable of launching nuclear missiles; India has one such submarine, too, and Israel is believed to have nuclear missiles on conventionally powered submarines.

As well as menacing the world at large, submarines pose a much more specific threat to other countries’ navies; most military subs are attack boats rather than missile platforms. This makes anti-submarine warfare (ASW) a high priority for anyone who wants to keep their surface ships on the surface. Because such warfare depends on interpreting lots of data from different sources—sonar arrays on ships, sonar buoys dropped from aircraft, passive listening systems on the sea-floor—technology which allows new types of sensor and new ways of communicating could greatly increase its possibilities. “There’s an unmanned-systems explosion,” says Jim Galambos of DARPA, the Pentagon’s future-technology arm. Up until now, he says, submariners could be fairly sure of their hiding place, operating “alone and unafraid”. That is changing.

Aircraft play a big role in today’s ASW, flying from ships or shore to drop “sonobuoys” in patterns calculated to have the best chance of spotting something. This is expensive. An aeroplane with 8-10 people in it throws buoys out and waits around to listen to them and process their data on board. “In future you can envision a pair of AUVs [autonomous underwater vehicles], one deploying and one loitering and listening,” says Fred Cotaras of Ultra Electronics, a sonobuoy maker. Cheaper deployment means more buoys.

But more data is not that helpful if you do not have ways of moving it around, or of knowing where exactly it comes from. That is why DARPA is working on a Positioning System for Deep Ocean Navigation (POSYDON) which aims to provide “omnipresent, robust positioning across ocean basins” just as GPS satellites do above water, says Lisa Zurk, who heads up the programme. The system will use a natural feature of the ocean known as the “deep sound channel”. The speed of sound in water depends on temperature, pressure and, to some extent, salinity. The deep sound channel is found at the depth where these factors provide the lowest speed of sound. Below it, higher pressure makes the sound faster; above it, warmer water has the same effect…

Even in heavily surveilled seas, spotting submarines will remain tricky. They are already quiet, and getting quieter; new “air-independent propulsion” systems mean that conventionally powered submarines can now turn off their diesel engines and run as quietly as nuclear ones, perhaps even more so, for extended periods of time. Greater autonomy, and thus fewer humans—or none at all—could make submarines quieter still.

A case in point is a Russian weapon called Status-6, also known as Kanyon, about which Vladimir Putin boasted in a speech on March 1st, 2018. America’s recent nuclear-posture review describes it as “a new intercontinental, nuclear-armed, nuclear-powered, undersea autonomous torpedo”. A Russian state television broadcast in 2015 appeared to show it as a long, thin AUV that can be launched from a modified submarine and travel thousands of kilometres to explode off the shore of a major city with a great deal more energy than the largest warheads on ICBMs, thus generating a radioactive tsunami. Such a system might be seen as preserving a second-strike capability even if the target had a missile-defence system capable of shooting ICBMs out of the sky…

One part of the ocean that has become particularly interesting in this regard is the Arctic. Tracking submarines under or near ice is difficult, because ice constantly shifts, crackles and groans loudly enough to mask the subtle sounds of a submarine. With ever less ice in the Arctic this is becoming less of a problem, meaning America should be better able to track Russian submarines through its Assured Arctic Awareness programme…

Greater numbers of better sensors, better networked, will not soon make submarines useless; but even without breakthroughs, they could erode the strategic norm that has guided nuclear thinking for over half a century—that of an unstoppable second strike.

Excerpts from Mutually assured detection, Economist, Mar. 10, 2018

Nuclear Waste and Nuclear Energy, Uganda

Mukono- Residents of Kitoba village in Mukono District have opposed plans by the Uganda Atomic Energy Council (AEC) to construct a nuclear and atomic waste site in the area.  The residents fear the dump for non-functional atomic equipment, including X-rays and cancer machines, will compromise their safety.  Already, the residents at Canaan Sites are suspicious of a container that has been standing on the 11.5 acres of land acquired by the AEC in 2011.

But AEC executive secretary Deogratias Luwalira told the residents that the Energy ministry acquired the land to implement a five-year master plan.
He told the residents at Kichwa Primary School in Mpoma during a community awareness meeting on that the Energy ministry acquired the land to build AEC headquarters, staff accommodation, laboratories, atomic/nuclear storage facility, and sports fields.

“The equipment to be kept here has no safety hazards. The store will have a safety case that will be operated in a safe manner,” Mr Luwalira said.
He said radioactive wastes are currently scattered in different parts of the country and needed to be secured in one central location…

In the meantime, Uganda plans to be the first African nation to develop nuclear power, see IAEA gives node as Uganda pushes for nuclear power use (jan. 2018)

Excerpts Mukono rejects radioactive waste site, http://www.monitor.co.ug/, Apr. 10, 2018

Like Afghanistan, Like Niger?

Agadez Niger

On the scorching edge of the Sahara Desert, the U.S. Air Force is building a base for armed drones, the newest front in America’s battle against the growing extremist threat in Africa’s vast Sahel region.  Three hangars and the first layers of a runway command a sandy, barren field. Niger Air Base 201 is expected to be functional in 2019. The base, a few miles outside Agadez and built at the request of Niger’s government, will eventually house fighter jets and MQ-9 drones transferred from the capital Niamey. The drones, with surveillance and added striking capabilities, will have a range enabling them to reach a number of West and North African countries.

Few knew of the American military’s presence in this desperately poor, remote West African country until October 2018, when an ambush by Islamic State group-linked extremists killed four U.S. soldiers and five Nigeriens.

The $110 million project is the largest troop labor construction project in U.S. history, according to Air Force officials. It will cost $15 million annually to operate…. Already the U.S. military presence here is the second largest in Africa behind the sole permanent U.S. base on the continent, in the tiny Horn of Africa nation of Djibouti.  “We are afraid of falling back into the same situation as in Afghanistan, with many mistakes made by American soldiers who did not always know the difference between a wedding ceremony and a training of terrorist groups,” said Amadou Roufai, a Nigerien administration official.  Civic leader Nouhou Mahamadou also expressed concerns.

“The presence of foreign bases in general and American in particular is a serious surrender of our sovereignty and a serious attack on the morale of the Nigerien military,” he said.

The number of U.S. military personnel in Niger has risen over the past few years from 100 to 800, the second largest concentration in Africa after the 4,000 in Camp Lemonnier in Djibouti. About 500 personnel are working on the new air and drone base and the base camp is marked with an American and Nigerien flag.

Excerpts  from Carley Petesch, US Builds Drone Base in Niger, Crossroads of Extremism Fight, Associated Press, April, 23, 2018

Fleas in the Barn, they are- for Joseph Kabila et al.

Lake Mai Ndombe, image from wikipedia

Inongo is the provincial capital of the Mai-Ndombe Province, a 13-million-hectare area located some 650 km northeast of Kinshasa, Demoractic Republic of Conglo, DRC.

The forests of Mai-Ndombe… are rich in rare and precious woods (red wood, black wood, blue wood, tola, kambala, lifake, among others). It is also home to about 7,500 bonobos, an endangered primate…The forests constitute a vital platform providing livelihoods for some 73,000 indigenous individuals, mostly Batwa (Pygmies), who live here alongside the province’s 1.8 million population, many of whom with no secure land rights.  Recent studies also have revealed that the province – and indeed the forests – boasts significant reserves of diamond of precious metals nickel, copper, oil and coal, and vast quantities of uranium lying deep inside the Lake Mai-Ndombe.

In an effort to save these precious forests, the World Bank in 2016 approved DRC’s REDD+ programmes aimed at reducing greenhouse gas emissions and fight forest’s deforestation and degradation, which it would fund to the tune of 90 million dollars annually.  The projects, which are currently estimated at 20, have since transformed the Mai-Ndombe Province into a testing ground for international climate schemes. And as part of the projects, indigenous and other local people caring for the forests and depending on them for their livelihoods were supposed to be rewarded for their efforts.

However, Marine Gauthier, a Paris-based expert who authored a report on the sorry state of the Mai-Ndombe forest, seems to have found serious flaws in these ambitious programmes.  The report, released a few days before the International Day of Forests on March 21, 2018 by the Rights and Resources’ Initiative (RRI)), cited weak recognition of communities’ land rights, and recommended that key prerequisites should be addressed before any other REDD+ funds are invested.  In the interim, it said, REDD+ investments should be put on hold…..

Under the DRC’s 2014 Forest Code, indigenous people and local communities have the legal right to own forest covering an area of up to 50,000 hectares.Thirteen communities in the territories of Mushie and Bolobo in the Mai-Ndombe province have since asked for formal title of a total of 65,308 hectares of land, reports said, adding that only 300 hectares have been legally recognised for each community – a total of only 3,900 hectares.

Pretoria-based Donnenfeld added: “My guess is that the government is more interested in selling these resources to multinationals than it in seeing it benefit the community….Gauthier pointed out that…“REDD+ opens the door to more land-grabbing by external stakeholders appealed…. Local communities’ land rights should be recognised through existing legal possibilities such as local community forest concessions so that they can keep protecting the forest, hence achieving REDD+ objectives.”

Excerpts from Issa Sikiti da SilvaReprint, DR Congo’s Mai-Ndombe Forest ‘Savaged’ As Landless Communities Struggle,  IPS, Apr. 17, 2018

In the meantime the country is ravaged by internal violence

Breathing in Plutonium Dust: Hanford

Testing a sheep's thyroid for radiation. Image from wikipedia

The Energy Department project to tear down the Plutonium Finish Plant at the Hanford Site was halted in mid-December 2017 after radioactive dust was discovered far off the plant site. T As crews demolished a shuttered nuclear weapons plant during 2017 in central Washington, specks of plutonium were swept up in high gusts and blown miles across a desert plateau above the Columbia River.  The releases at the Department of Energy cleanup site spewed unknown amounts of plutonium dust into the environment, coated private automobiles with the toxic heavy metal and dispensed lifetime internal radioactive doses to 42 work

The contamination events went on for nearly 12 months, getting progressively worse before the project was halted in mid-December. Now, state health and environmental regulators, Energy Department officials and federal safety investigators are trying to figure out what went wrong and who is responsible.

The events at the Hanford Site, near the Tri-Cities area of Richland, Pasco and Kennewick, vividly demonstrate the consequences when a radioactive cleanup project spirals out of control.

The mishap occurred at one of the nation’s most radioactively contaminated buildings, known as the Plutonium Finishing Plant. The factory, which opened in 1949 a few miles from the Columbia River, supplied plutonium for thousands of U.S. nuclear weapons before it was shut down in 1989.
The exposures from the plutonium releases in 2017 were minuscule bestimated to be a small fraction of the background radiation that every human gets from nature. But unlike cosmic radiation or radon gas, plutonium can lodge itself inside the body and deliver tissue damaging alpha particles over a lifetime…. As workers removed equipment to prepare for walls to be torn down, air monitoring alarms sounded almost every day, he said. Workers were subjected to repeated nasal smears to determine if they had breathed plutonium dust, he said….Seven employee automobiles were contaminated at the plant site, according to a Jan. 9, 2018 letter from the state Department of Ecology to Doug Shoop, the federal site chief at Hanford… The demolition, costing $57 million, was being conducted by one of the nation’s largest engineering firms, CH2M, a unit of Texas-based Jacobs Engineering. CH2M is now under federal investigation for the releases, according to a letter sent by the Energy Department’s enforcement office in late March 2018…

In March 2018, the company released a preliminary analysis [pdf] of the contamination and blamed it on a half dozen factors, including a “fixative” that was supposed to bind the dust but was too diluted to work properly and a decision to accelerate demolition when the contamination seemed to be stable.  The Energy Department plan for the demolition originally required the contractor to remove debris as it accumulated. But in January 2017, just before the first releases, officials authorized CH2M to allow the debris to pile up, according to a monthly site report by an inspector for the Defense Nuclear Facilities Safety Board, an independent agency.  In fact, workers at the plant said the demolition site was ringed by 8-foot-tall piles of radioactive debris with little to prevent dust from blowing off

The problems at the Plutonium Finishing Plant were not an isolated event at Hanford, which has struggled with its cleanup for more than a decade.
Work was stopped five years ago on key parts of a $16.8-billion waste treatment plant that is supposed to turn 56 million gallons of radioactive sludge into glass. Technical deficiencies in its design are still being studied, while delays mount. Several years ago, the Energy Department pushed back the full startup by 17 years to 2039, though it hopes to begin treating some less radioactive waste by 2022….In 2017, a tunnel that stored railroad cars full of contaminated equipment collapsed. The Energy Department pumped the 358-foot long tunnel full of a concrete mixture. A decision is pending about what to do with a second storage tunnel 1,688 feet long.

The state attorney general, along with Hanford Challenge and a union, is suing the Energy Department for venting noxious gases from underground waste tanks over recent years, sickening workers.

Smith, the Ecology manager, said a lot of cleanup progress has been made at Hanford. Hundreds of buildings have been torn down. Much of the soil along the banks of the Columbia River has been cleaned up enough for any future use. And the site’s nine nuclear reactors have been put in stable condition…

One of those facilities, known as 324 Building,[Chemical Materials Engineering Laboratory] was used to extract plutonium from spent fuel, said Robert Alvarez, a former assistant secretary of Energy and a longtime critic of the cleanup. The facility has civilian waste from Germany, sent as part of a research project, as well as large amounts of radioactive waste that was placed in unlined burial pits, he said. Records of what lies in the pits were destroyed in 1988, he said.

Excerpts from RALPH VARTABEDIAN, Contamination from a nuclear cleanup forced a shutdown. Investigators want to know who is responsible, LA Times, Apr. 16, 2018

Open-Ocean Farming

image from https://www.innovasea.com/

Ocean Farm 1is the first of six experimental fish farms ordered by SalMar, a Norwegian firm, at a total cost of $300 million. InnovaSea, an American firm, makes large open-ocean aquaculture nets called SeaStations, which are currently used off the coast of Panama and Hawaii, but Ocean Farm 1 is “by far the largest open-ocean fish farm in the world,” says Thor Hukkelas, who leads research and development on aquaculture at Kongsberg Maritime, a Norwegian engineering company. Mr Hukkelas’s team provided Ocean Farm 1’s sensor system: 12 echo sounders mounted on the bottom of the frame, high-definition cameras dangled into the water at different depths, oxygen sensors and movable, submerged feeding tubes.

Fish farming plays an increasingly central role in the provision of sufficient amounts of protein to Earth’s population. People eat more fish globally than beef, and farmed fish account for almost half of that amount  Many wild fisheries are already at or past their sustainable capacity, so efforts to make fish farming more productive are vital.

Ocean Farm 1 aims to automate what is an expensive and difficult business, and to solve two key problems that occur in near-shore aquaculture: that there is not enough space and that it is too polluting. The excrement from millions of salmon can easily foul up Norway’s fjords, and their shallow, relatively still water is a breeding ground for sea lice. In the open ocean the water is deeper and better oxygenated. The currents are stronger and so better able to sweep away excrement.

Near-shore farms normally spread feed on the water’s surface and allow it to sink, but Ocean Farm 1 has 16 valves at varying depths, through which feed can be pushed. By putting it farther down in the cage it is able to keep the salmon in deeper water. The salmon are fine with this. The sea lice, which like the shallows, are not.

All of this means the number of fish can be increased. The Norwegian government wants to triple its aquaculture production by 2030 and quintuple it by 2050. “Scaling up of traditional aquaculture is not going to reach these high-growth ambitions,” says Mr Hukkelas.

Kongsberg is gathering data from all the sensors on the farm to build a machine-learning model, called SimSalma, which learns the behaviour of the salmon in order to optimise their feeding. Currently, human operators on the structure decide when and where to feed the fish by examining the data. By 2019 Kongsberg plans to have automated this, pushing feed at optimum times and places and reducing human involvement. The success and expansion of such projects would represent a major step towards maintaining global fish stocks.

Net gains: Open-ocean fish farming is becoming easier, Economist,  Mar. 10, 2018.

Space Junk Removal

RemoveDebris

The first experiment designed to demonstrate active space-debris removal in orbit reached the International Space Station on April 4, 2018 aboard SpaceX’s Dragon capsule.    The RemoveDebris experiment, designed by a team led by the University of Surrey in the U.K. as part of a 15.2 million euro ($18.7 million), European Union (EU)-funded project, is about the size of a washing machine and weighs 100 kilograms (220 lbs.).

It carries three types of technologies for space-debris capture and active deorbiting — a harpoon, a net and a drag sail. It will also test a lidar system for optical navigation that will help future chaser spacecraft better aim at their targets.

“For this mission, we are actually ejecting our own little cubesats,” Jason Forshaw, RemoveDebris project manager at the University of Surrey, said last year. “These little cubesats are maybe the size of a shoebox, very small. We eject them and capture them with the net.”

“We are testing these four technologies in this demonstration mission, and we want to see whether they work or not,” said Forshaw, referring to the harpoon, net, drag sail and lidar. “If they work, then that would be fantastic, and then these technologies could be used on future missions.”

Some 40,000 space objects — the vast majority of which are defunct satellites and fragments from collisions — are currently being tracked by the U.S.-based Space Surveillance Network. It is estimated that some 7,600 metric tons (8,378 tons) of junk hurtle around the Earth at speeds of up to 17,500 mph, threatening functioning spacecraft, according to a statement from the University of Surrey….

[T]hese same means of capturing debris could easily be used to destroy or otherwise interfere with functional orbital assets [i.e, a functional satellite], most of which are not equipped with a rapid means of evasion or any other form of defense. To a harpoon, net, or drag sail, there is little difference between an out of control hunk of Soviet era rocket and an operational communications or reconnaissance satellite.

Excerpts from BY ALEX HOLLINGS, SpaceX delivers prototype space junk collector to the ISS, but the experiment has serious defense implications, SOFREP.com, Apr. 6, 2018;This Space Junk Removal Experiment Will Harpoon & Net Debris in Orbit, Space.com, Apr. 6, 2018