Category Archives: climate change

Mini-Green Grids

image from http://www.nigeriaelectricityhub.com/2017/12/11/legal-framework-for-mini-grids-power-generation-and-distribution-in-nigeria/

A forested village in Jharkhand state, eastern India, Narotoli is home mainly to adherents of Sarna, a nature-worshipping tribal religion. In more ways than one, it has long been off-grid… In 2018, it became one of the last in India to benefit from a push by Narendra Modi, the prime minister, to supply electricity to all the country’s villages. But the national power lines are so “reliably unreliable”, says an Indian executive, that they might as well be washing lines.

In 2016, before the national grid arrived, however, Mlinda, a social enterprise, had set up a “mini-grid”, a bank of batteries charged by solar panels and hooked up to homes, to guarantee round-the-clock power independent of the national network.  The power generated by the plant is expensive (though it costs less than villagers often pay for alternatives such as kerosene for lighting and diesel for irrigation pumps). The worry is that demand for electricity may not be enough to justify the installation cost. …But Mlinda and other mini-grid installers see them as more than a way to satisfy existing demand for electricity: they are a way to catalyse development. The installers advise villagers on irrigation, farming and marketing to help them develop businesses that require reliable electricity, which in turn justifies the expense of installation.

Vijay Bhaskar of Mlinda says a big mistake in development has been to assume that, once people are hooked up to electricity, businesses will automatically flourish. People have to be taught how to make the most of power, he says. “Bringing energy is the easy part. The hard part is finding productive ways to make use of it.”  According to one British expert, “mini-grid operators are not sellers of kilowatt-hours; they are stimulators of rural development.” Jaideep Mukherjee, the boss of Smart Power India, an NGO supported by the Rockefeller Foundation, says their job is to “demonstrate the benefits, train and then propagate”.

An independent study for Mlinda found that GDP per person in eight villages with mini-grids rose by 10.6% on average over the first 13 months, compared with 4.6% in a group of similar villages without them.  Mini-grids are being set up at the rate of just 100 or so a year, from Myanmar to Mozambique. But the International Energy Agency (IEA), a forecaster, says hundreds of thousands of them could connect 440m people by 2030, with the right policies and about $300bn of investment.

African countries used to focus almost exclusively on expanding national electricity networks. Now some, including Nigeria and Togo, have started to prioritise mini-grids. ..

Most mini-grids are green, unlike diesel, kerosene and coal- and gas-fired electricity. That is a welcome feature, though not the main aim, since the contribution of places like Narotoli to global warming is minuscule.

Excerpts from Mini-girds and development: Empowering Villages, Economist, July 14, 2018, at 61

Running out of Beaches: sand miners and builders

For a place that depends on sun-and-sand-seeking tourists, Fort Lauderdale, Florida has a big problem: Its beaches are disappearing.  The Florida city has been fighting a defensive battle against nature for decades. The sand that lines its shores is constantly being swept out to sea by wind, waves and tides. In the natural course of things, that sand would be replenished by grains carried by the Atlantic’s southward-moving currents. That’s what used to happen. Today, however, so many marinas, jetties and breakwaters have been built along the Atlantic coast that the flow of incoming sand has been blocked. The natural erosion continues, but the natural replenishment does not.

For many years, Broward County, in which Fort Lauderdale sits, solved its vanishing-beach problem by replacing the sand with grains dredged up from the nearby ocean floor. Nearly 12 million cubic yards of underwater grains have been stripped off the sea bottom and thrown onto the county’s shores. But by now, virtually all of the accessible undersea sand has been used up.  The same goes for Miami Beach, Palm Beach and many other beach-dependent Florida towns. In fact, according to the state’s Department of Environmental Protection, nearly half of the state’s beaches have suffered “critical erosion.” Florida isn’t an anomaly. Beaches are disappearing all across America and around the world, from South Africa to Japan to Western Europe. A 2017 study by the U.S. Geological Survey warned that unless something is done, as much as two-thirds of Southern California’s beaches may be completely eroded by 2100…

Massive coastal development blocks the flow of ocean-borne sand. In many countries, including the U.S., river dams also cut off sand that used to feed beaches. The widespread practice of dredging up river sand to use for making concrete makes the problem worse. Researchers at the South African Institute of International Affairs believe that sand mining has slashed by one-third the flow of river sand that feeds the beaches of Durban, South Africa; and in the San Francisco Bay, environmentalists warn that massive sand dredging may be starving nearby beaches.

In some places, outlaw sand miners are hauling away the beach itself. In Morocco, Algeria, Russian-occupied Crimea and elsewhere, illegal miners have stripped entire beaches for construction sand, leaving behind rocky moonscapes. Smugglers in Malaysia, Indonesia and Cambodia load beach sand onto small barges in the night to sell in Singapore.

Having thwarted the natural processes that used to feed beaches, people are now replacing them with artificial ones. The easiest and cheapest method is to suck up grains from offshore and blast them onto the beach through massive pipes. But having run out of offshore sand, many towns in southern Florida are left with no choice but to dig their sand from inland quarries and haul it to the coast one roaring, diesel-spewing truck at a time. Tourists and locals hate the noise and traffic, and county officials hate the extra cost, which can be easily double that of dredged sand. Desperate officials are even talking about importing sand from the Bahamas.

The costs add up fast. The price of renourishing a beach can reach $10 million per mile. Broward County alone has spent more than $100 million replenishing its beaches in a multiyear project launched in 2015. More than a few places, such as Atlantic City, have already racked up tabs of well over $100 million by themselves. All told, nearly $9 billion has been spent in the U.S. in recent decades on artificially rebuilding hundreds of miles of beach, according to researchers at Western Carolina University. Florida accounted for about a quarter of the total. Almost all of the costs are covered by taxpayers.

Dredging up ocean sand clouds the water with stirred-up grains and muck. Suspended in the water, those particles can block life-giving sunlight from reaching coral reefs. And when the grains settle, they can suffocate the reefs and whatever creatures are living on them.  Moreover, beach sands are themselves home to a multitude of creatures. Besides the obvious ones—clams, crabs, birds, plants—they shelter all kinds of nematodes, flatworms, bacteria and other organisms so small that they live on the surface of individual sand grains. Despite their tiny size, these creatures play an important role in the ecosystem, breaking down organic matter and providing food for other creatures. Dumping thousands of tons of imported sand on top of these organisms can obliterate whole colonies of them.

Beaches are bulwarks that can protect lives and property from storms and rising seas in our climatically imperiled world….The U.S.’s densely populated eastern seaboard is already getting a taste of what that means. When Hurricane Sandy hit in 2012, it killed 159 people and damaged or destroyed at least 650,000 homes. The storm struckhardest in areas where beaches had eroded, leaving little or no buffer between cities and the raging wind and waves. On the other hand, according to the U.S. Army Corps of Engineers, renourished beaches in New York and New Jersey prevented an estimated $1.3 billion in damages that Sandy otherwise would have inflicted.

Excerpts from Vince Beiser, The Battle for our Beaches, Wall Street Journal, July 19, 2018

See also The World in a Grain

A Resurrection Story: the Great Barrier Reef

Heron Island, a coral cay in the southern Great Barrier Reef. Image from wikipedia

Great Barrier Reef, which runs for 2,300km along the coast of Queensland, is one of the icons of environmentalism. Conservationists constantly worry that human activity, particularly greenhouse-gas-induced global warming, will harm or even destroy it….Reef-forming corals prefer shallow water so, as the world’s sea levels have yo-yoed during the Ice Ages, the barrier reef has come and gone. The details of this have just been revealed in a paper published in Nature Geoscience by Jody Webster of the University of Sydney and her colleagues…. They discovered that it has died and then been reborn five times during the past 30,000 years. Two early reefs were destroyed by exposure as sea levels fell. Three more recent ones were overwhelmed by water too deep for them to live in, and also smothered by sediment from the mainland. The current reef is therefore the sixth of the period.

The barrier reef’s ability to resurrect itself is encouraging. But whether it could rise from the dead a sixth time is moot. The threat now is different. It is called bleaching and involves the tiny animals, known as polyps, which are the living part of a reef, ejecting their symbiotic algae. These algae provide much of a polyp’s food, but also generate toxins if the temperature gets too high, in which case the polyp throws them out. That causes the coral to lose its colour.  Polyps can tolerate occasional bleaching, but if it goes on too long, then they die. In the short term, therefore, global warming really does look a serious threat to the reef. It would, no doubt, return if and when the sea temperature dropped again. But when that would be, who knows?

Excerpts from Conservation: A Great Survivor, Economist, June 2, 2018, at 78

A Glimmer of Hope: protected areas

Niassa Reserve in Mozambique. Image from wikipedia

Globally, one-third of protected land is under intense pressure from road building, grazing, urbanization, and other human activities, according to a new study in the 18 May 2018 issue of Science…Nations around the world have committed to preserving biodiversity under the Convention on Biological Diversity (CBD), through protected status designations ranging from nature reserves with strict controls on human impact to regions where people can extract natural resources in a sustainable way. This study suggests that many of these nations are failing to meet their conservation goals.

James Watson, a researcher at the Wildlife Conservation Society and an author of the study, noted that 111 nations currently claim they have meet their obligations under the CBD based on the extent of their protected areas. “But if you only counted the land in protected areas that are not degraded, which play a role in conserving biodiversity, 77 of these nations don’t meet the bar. And it’s a low bar.”

Watson and a team of researchers decided to take advantage of a recently released human footprint map to look at the degradation of protected areas. “The results are quite staggering,” said Watson. “We found that 2.3 million square miles — twice the size of Alaska — was impacted by road building, grazing, logging, roads and urbanization. That is 32.8% of all protected land — the land set aside by nations for the purpose of biodiversity conservation — that] is highly degraded.”  Regions that were found to be particularly burdened by human activity include western Europe and southern Asia.

In terms of protected land that is free of any measurable human pressure, 42% could be classified as such; however, many of these areas are within remote regions of high-latitude nations, such as Russia and Canada.

Some conservation efforts have been fruitful, though. “We did see glimmers of hope,” said Watson…. (e.g., the Keo Seima Wildlife Sanctuary in Cambodia, and Niassa Reserve in Mozambique)

Protected areas designated after 1993 have a lower level of intense human pressure within their borders than those previously designated, the authors found. They suggest this may indicate that more recently designated areas were targeted as protected spaces because they were recognized as being under low human pressure.

Exceprts from Michelle Hampson, One-Third of World’s Protected Areas under Intense Human Pressure, American Association for the Advancement of Scicence,  May 16, 2018

Fish, Gas and Minerals: the Arctic

Mr Xi has been showing a growing interest in Arctic countries. In 2014 he revealed in a speech that China itself wanted to become a “polar great power”..,,In January 2018 the Chinese government published its first policy document outlining its Arctic strategy.

China is also keen to tap into the Arctic resources that will become easier to exploit as the ice cap retreats. They include fish, minerals, oil and gas. The region could hold a quarter of the world’s as-yet-undiscovered hydrocarbons, according to the United States Geological Survey. Chinese firms are interested in mining zinc, uranium and rare earths in Greenland.

As the ice melts, it may become more feasible for cargo ships to sail through Arctic waters. China is excited by this possibility (its media speak of an “ice silk road”). In the coming decades such routes could cut several thousand kilometres off journeys between Shanghai and Europe. Sending ships through the Arctic could also help to revive port cities in China’s north-eastern rustbelt… China is thinking of building ports and other infrastructure in the Arctic to facilitate shipping. State-linked firms in China talk of building an Arctic railway across Finland.

Chinese analysts believe that using Arctic routes would help China strategically, too. It could reduce the need to ship goods through the Malacca Strait, a choke-point connecting the Pacific and Indian oceans. Much of China’s global shipping passes through the strait. It worries endlessly about the strait’s vulnerability to blockade—for example, should war break out with America.

There are no heated territorial disputes in the Arctic, but there are sensitivities, including Canada’s claim to the North-West Passage, a trans-Arctic waterway that America regards as international—ie, belonging to no single state.

Plenty of non-Arctic countries, including European ones, have similar dreams. But China is “by far the outlier” in terms of the amount of money it has pledged or already poured into the region, says Marc Lanteigne of Massey University in New Zealand. Its biggest investments have been in Russia, including a gas plant that began operating in Siberia in December 2017. Russia was once deeply cynical about China’s intentions. But since the crisis in Ukraine it has had to look east for investment in its Arctic regions.

The interest shown by Chinese firms could be good news for many Arctic communities. Few other investors have shown themselves willing to stomach the high costs and slow pay-offs involved in developing the far north…. The main concern of Arctic countries is that China’s ambitions will result in a gradual rewiring of the region’s politics in ways that give China more influence in determining how the Arctic is managed. Greenland is a place to watch. Political elites there favour independence from Denmark but resist taking the plunge because the island’s economy is so dependent on Danish support. The prospect of Chinese investment could change that. Should Greenland become independent, China could use its clout there to help further its own interests at meetings of Arctic states, in the same way that it uses its influence over Cambodia and Laos to prevent the Association of South-East Asian Nations from criticising Chinese behaviour in their neighbourhood.

Excerpts from The Arctic: A Silk Road through Ice, Economist, Apr. 14, 2018, at 37

The Unquenchable Thirst

South-to-North Water Transfer Project. image from wikipedia

Most of the drinking water consumed in Beijing has travelled 1,432km (895 miles), roughly the distance from New York to Orlando, Florida. Its journey begins in a remote and hilly part of central China at the Danjiangkou reservoir, on the bottom of which lies the drowned city of Junzhou. The water gushes north by canal and pipeline, crosses the Yellow river by burrowing under it, and arrives, 15 days later, in the water-treatment plants of Beijing. Two-thirds of the city’s tap water and a third of its total supply now comes from Danjiangkou.

This winter and spring, the reservoir was the capital’s lifeline. No rain or snow fell in Beijing between October 23rd 2017 and March 17th 2018—by far the longest drought on record. Yet the city suffered no supply disruptions, unlike Shanxi province to the west, where local governments rationed water. The central government is exultant, since the project which irrigates Beijing was built at vast cost and against some opposition.

The South-to-North Water Diversion Project—to give the structure its proper name—is the most expensive infrastructure enterprise in the world. It is the largest transfer of water between river basins in history, and China’s main response to its worst environmental threat, which is (despite all the pollution) lack of water.

The route between Beijing and Danjiangkou, which lies on a tributary of the Yangzi, opened in 2014. An eastern route opened in 2013 using the ancient Grand Canal between Hangzhou and the capital. (Jaw-dropping hydrological achievements are a feature of Chinese history.) A third link is planned on the Tibetan plateau, but since that area is prone to earthquakes and landslides, it has been postponed indefinitely…

Downstream from Danjiangkou, pollution has proved intractable. By diverting water from the Yangzi, the project has made the river more sluggish. It has become less able to wash away contaminants and unable to sustain wetlands, which act as sponges and reduce flooding. To compensate for water taken from their rivers, local governments are also building dams wherever they can to divert it back again. Shaanxi province, for example, is damming the Han river to transfer water to its depleted river Wei….Worst of all, the project diverts not only water but money and attention from China’s real water problem: waste and pollution.

Excerpts from Water: Massive Diversiion, Economist, Apr. 7, 2018

Furthest from their Minds: greenhouse gases in Afirca

When sub-Saharan Africa comes up in discussions of climate change, it is almost invariably in the context of adapting to the consequences, such as worsening droughts. That makes sense. The region is responsible for just 7.1% of the world’s greenhouse-gas emissions, despite being home to 14% of its people. Most African countries do not emit much carbon dioxide. Yet there are some notable exceptions.

Start with coal-rich South Africa, which belches out more carbon dioxide than Britain, despite having 10m fewer people and an economy one-eighth the size. Like nearly all of its power plants, many of its vehicles depend on coal, which is used to make the country’s petrol (a technique that helped the old apartheid regime cope with sanctions). A petrochemical complex in the town of Secunda owned by Sasol, a big energy and chemicals firm, is one of the world’s largest localised sources of greenhouse gases.  Zambia is another exception. It burns so much vegetation that its land-use-related emissions surpass those of Brazil, a notorious—and much larger—deforester.

South Africa and Zambia may be extreme examples, but they are not the region’s only big emitters . Nigerian households and businesses rely on dirty diesel generators for 14GW of power, more than the country’s installed capacity of 10GW. Subsistence farmers from Angola to Kenya use slash-and-burn techniques to fertilise fields with ash and to make charcoal, which nearly 1bn Africans use to cook. This, plus the breakneck growth of extractive industries, explains why African forests are disappearing at a rate of 0.5% a year, faster than in South America. Because trees sequester carbon, cutting them counts as emissions in climate accounting.

Other African countries are following South Africa’s lead and embracing coal…A new coal-fired power plant ….Lamu in Kenya is one of many Chinese-backed coal projects in Africa…Africa’s sunny skies and long, blustery coastlines offer near-limitless solar- and wind-energy potential. But what African economies need now are “spinning reserves”, which can respond quickly to volatile demand, says Josh Agenbroad of the Rocky Mountain Institute, a think-tank in Colorado. Fossil fuels deliver this; renewables do not…. Several countries are intrigued by hybrid plants where most electricity is generated by solar panels, but diesel provides the spinning reserves…

Excerpts from  Africa and Climate Change: A Burning Issue, Economist,  Apr. 21, 2018, at 41.