Category Archives: climate change

Mini-Green Grids

image from http://www.nigeriaelectricityhub.com/2017/12/11/legal-framework-for-mini-grids-power-generation-and-distribution-in-nigeria/

A forested village in Jharkhand state, eastern India, Narotoli is home mainly to adherents of Sarna, a nature-worshipping tribal religion. In more ways than one, it has long been off-grid… In 2018, it became one of the last in India to benefit from a push by Narendra Modi, the prime minister, to supply electricity to all the country’s villages. But the national power lines are so “reliably unreliable”, says an Indian executive, that they might as well be washing lines.

In 2016, before the national grid arrived, however, Mlinda, a social enterprise, had set up a “mini-grid”, a bank of batteries charged by solar panels and hooked up to homes, to guarantee round-the-clock power independent of the national network.  The power generated by the plant is expensive (though it costs less than villagers often pay for alternatives such as kerosene for lighting and diesel for irrigation pumps). The worry is that demand for electricity may not be enough to justify the installation cost. …But Mlinda and other mini-grid installers see them as more than a way to satisfy existing demand for electricity: they are a way to catalyse development. The installers advise villagers on irrigation, farming and marketing to help them develop businesses that require reliable electricity, which in turn justifies the expense of installation.

Vijay Bhaskar of Mlinda says a big mistake in development has been to assume that, once people are hooked up to electricity, businesses will automatically flourish. People have to be taught how to make the most of power, he says. “Bringing energy is the easy part. The hard part is finding productive ways to make use of it.”  According to one British expert, “mini-grid operators are not sellers of kilowatt-hours; they are stimulators of rural development.” Jaideep Mukherjee, the boss of Smart Power India, an NGO supported by the Rockefeller Foundation, says their job is to “demonstrate the benefits, train and then propagate”.

An independent study for Mlinda found that GDP per person in eight villages with mini-grids rose by 10.6% on average over the first 13 months, compared with 4.6% in a group of similar villages without them.  Mini-grids are being set up at the rate of just 100 or so a year, from Myanmar to Mozambique. But the International Energy Agency (IEA), a forecaster, says hundreds of thousands of them could connect 440m people by 2030, with the right policies and about $300bn of investment.

African countries used to focus almost exclusively on expanding national electricity networks. Now some, including Nigeria and Togo, have started to prioritise mini-grids. ..

Most mini-grids are green, unlike diesel, kerosene and coal- and gas-fired electricity. That is a welcome feature, though not the main aim, since the contribution of places like Narotoli to global warming is minuscule.

Excerpts from Mini-girds and development: Empowering Villages, Economist, July 14, 2018, at 61

Running out of Beaches: sand miners and builders

For a place that depends on sun-and-sand-seeking tourists, Fort Lauderdale, Florida has a big problem: Its beaches are disappearing.  The Florida city has been fighting a defensive battle against nature for decades. The sand that lines its shores is constantly being swept out to sea by wind, waves and tides. In the natural course of things, that sand would be replenished by grains carried by the Atlantic’s southward-moving currents. That’s what used to happen. Today, however, so many marinas, jetties and breakwaters have been built along the Atlantic coast that the flow of incoming sand has been blocked. The natural erosion continues, but the natural replenishment does not.

For many years, Broward County, in which Fort Lauderdale sits, solved its vanishing-beach problem by replacing the sand with grains dredged up from the nearby ocean floor. Nearly 12 million cubic yards of underwater grains have been stripped off the sea bottom and thrown onto the county’s shores. But by now, virtually all of the accessible undersea sand has been used up.  The same goes for Miami Beach, Palm Beach and many other beach-dependent Florida towns. In fact, according to the state’s Department of Environmental Protection, nearly half of the state’s beaches have suffered “critical erosion.” Florida isn’t an anomaly. Beaches are disappearing all across America and around the world, from South Africa to Japan to Western Europe. A 2017 study by the U.S. Geological Survey warned that unless something is done, as much as two-thirds of Southern California’s beaches may be completely eroded by 2100…

Massive coastal development blocks the flow of ocean-borne sand. In many countries, including the U.S., river dams also cut off sand that used to feed beaches. The widespread practice of dredging up river sand to use for making concrete makes the problem worse. Researchers at the South African Institute of International Affairs believe that sand mining has slashed by one-third the flow of river sand that feeds the beaches of Durban, South Africa; and in the San Francisco Bay, environmentalists warn that massive sand dredging may be starving nearby beaches.

In some places, outlaw sand miners are hauling away the beach itself. In Morocco, Algeria, Russian-occupied Crimea and elsewhere, illegal miners have stripped entire beaches for construction sand, leaving behind rocky moonscapes. Smugglers in Malaysia, Indonesia and Cambodia load beach sand onto small barges in the night to sell in Singapore.

Having thwarted the natural processes that used to feed beaches, people are now replacing them with artificial ones. The easiest and cheapest method is to suck up grains from offshore and blast them onto the beach through massive pipes. But having run out of offshore sand, many towns in southern Florida are left with no choice but to dig their sand from inland quarries and haul it to the coast one roaring, diesel-spewing truck at a time. Tourists and locals hate the noise and traffic, and county officials hate the extra cost, which can be easily double that of dredged sand. Desperate officials are even talking about importing sand from the Bahamas.

The costs add up fast. The price of renourishing a beach can reach $10 million per mile. Broward County alone has spent more than $100 million replenishing its beaches in a multiyear project launched in 2015. More than a few places, such as Atlantic City, have already racked up tabs of well over $100 million by themselves. All told, nearly $9 billion has been spent in the U.S. in recent decades on artificially rebuilding hundreds of miles of beach, according to researchers at Western Carolina University. Florida accounted for about a quarter of the total. Almost all of the costs are covered by taxpayers.

Dredging up ocean sand clouds the water with stirred-up grains and muck. Suspended in the water, those particles can block life-giving sunlight from reaching coral reefs. And when the grains settle, they can suffocate the reefs and whatever creatures are living on them.  Moreover, beach sands are themselves home to a multitude of creatures. Besides the obvious ones—clams, crabs, birds, plants—they shelter all kinds of nematodes, flatworms, bacteria and other organisms so small that they live on the surface of individual sand grains. Despite their tiny size, these creatures play an important role in the ecosystem, breaking down organic matter and providing food for other creatures. Dumping thousands of tons of imported sand on top of these organisms can obliterate whole colonies of them.

Beaches are bulwarks that can protect lives and property from storms and rising seas in our climatically imperiled world….The U.S.’s densely populated eastern seaboard is already getting a taste of what that means. When Hurricane Sandy hit in 2012, it killed 159 people and damaged or destroyed at least 650,000 homes. The storm struckhardest in areas where beaches had eroded, leaving little or no buffer between cities and the raging wind and waves. On the other hand, according to the U.S. Army Corps of Engineers, renourished beaches in New York and New Jersey prevented an estimated $1.3 billion in damages that Sandy otherwise would have inflicted.

Excerpts from Vince Beiser, The Battle for our Beaches, Wall Street Journal, July 19, 2018

See also The World in a Grain

A Resurrection Story: the Great Barrier Reef

Heron Island, a coral cay in the southern Great Barrier Reef. Image from wikipedia

Great Barrier Reef, which runs for 2,300km along the coast of Queensland, is one of the icons of environmentalism. Conservationists constantly worry that human activity, particularly greenhouse-gas-induced global warming, will harm or even destroy it….Reef-forming corals prefer shallow water so, as the world’s sea levels have yo-yoed during the Ice Ages, the barrier reef has come and gone. The details of this have just been revealed in a paper published in Nature Geoscience by Jody Webster of the University of Sydney and her colleagues…. They discovered that it has died and then been reborn five times during the past 30,000 years. Two early reefs were destroyed by exposure as sea levels fell. Three more recent ones were overwhelmed by water too deep for them to live in, and also smothered by sediment from the mainland. The current reef is therefore the sixth of the period.

The barrier reef’s ability to resurrect itself is encouraging. But whether it could rise from the dead a sixth time is moot. The threat now is different. It is called bleaching and involves the tiny animals, known as polyps, which are the living part of a reef, ejecting their symbiotic algae. These algae provide much of a polyp’s food, but also generate toxins if the temperature gets too high, in which case the polyp throws them out. That causes the coral to lose its colour.  Polyps can tolerate occasional bleaching, but if it goes on too long, then they die. In the short term, therefore, global warming really does look a serious threat to the reef. It would, no doubt, return if and when the sea temperature dropped again. But when that would be, who knows?

Excerpts from Conservation: A Great Survivor, Economist, June 2, 2018, at 78

A Glimmer of Hope: protected areas

Niassa Reserve in Mozambique. Image from wikipedia

Globally, one-third of protected land is under intense pressure from road building, grazing, urbanization, and other human activities, according to a new study in the 18 May 2018 issue of Science…Nations around the world have committed to preserving biodiversity under the Convention on Biological Diversity (CBD), through protected status designations ranging from nature reserves with strict controls on human impact to regions where people can extract natural resources in a sustainable way. This study suggests that many of these nations are failing to meet their conservation goals.

James Watson, a researcher at the Wildlife Conservation Society and an author of the study, noted that 111 nations currently claim they have meet their obligations under the CBD based on the extent of their protected areas. “But if you only counted the land in protected areas that are not degraded, which play a role in conserving biodiversity, 77 of these nations don’t meet the bar. And it’s a low bar.”

Watson and a team of researchers decided to take advantage of a recently released human footprint map to look at the degradation of protected areas. “The results are quite staggering,” said Watson. “We found that 2.3 million square miles — twice the size of Alaska — was impacted by road building, grazing, logging, roads and urbanization. That is 32.8% of all protected land — the land set aside by nations for the purpose of biodiversity conservation — that] is highly degraded.”  Regions that were found to be particularly burdened by human activity include western Europe and southern Asia.

In terms of protected land that is free of any measurable human pressure, 42% could be classified as such; however, many of these areas are within remote regions of high-latitude nations, such as Russia and Canada.

Some conservation efforts have been fruitful, though. “We did see glimmers of hope,” said Watson…. (e.g., the Keo Seima Wildlife Sanctuary in Cambodia, and Niassa Reserve in Mozambique)

Protected areas designated after 1993 have a lower level of intense human pressure within their borders than those previously designated, the authors found. They suggest this may indicate that more recently designated areas were targeted as protected spaces because they were recognized as being under low human pressure.

Exceprts from Michelle Hampson, One-Third of World’s Protected Areas under Intense Human Pressure, American Association for the Advancement of Scicence,  May 16, 2018

Fish, Gas and Minerals: the Arctic

Mr Xi has been showing a growing interest in Arctic countries. In 2014 he revealed in a speech that China itself wanted to become a “polar great power”..,,In January 2018 the Chinese government published its first policy document outlining its Arctic strategy.

China is also keen to tap into the Arctic resources that will become easier to exploit as the ice cap retreats. They include fish, minerals, oil and gas. The region could hold a quarter of the world’s as-yet-undiscovered hydrocarbons, according to the United States Geological Survey. Chinese firms are interested in mining zinc, uranium and rare earths in Greenland.

As the ice melts, it may become more feasible for cargo ships to sail through Arctic waters. China is excited by this possibility (its media speak of an “ice silk road”). In the coming decades such routes could cut several thousand kilometres off journeys between Shanghai and Europe. Sending ships through the Arctic could also help to revive port cities in China’s north-eastern rustbelt… China is thinking of building ports and other infrastructure in the Arctic to facilitate shipping. State-linked firms in China talk of building an Arctic railway across Finland.

Chinese analysts believe that using Arctic routes would help China strategically, too. It could reduce the need to ship goods through the Malacca Strait, a choke-point connecting the Pacific and Indian oceans. Much of China’s global shipping passes through the strait. It worries endlessly about the strait’s vulnerability to blockade—for example, should war break out with America.

There are no heated territorial disputes in the Arctic, but there are sensitivities, including Canada’s claim to the North-West Passage, a trans-Arctic waterway that America regards as international—ie, belonging to no single state.

Plenty of non-Arctic countries, including European ones, have similar dreams. But China is “by far the outlier” in terms of the amount of money it has pledged or already poured into the region, says Marc Lanteigne of Massey University in New Zealand. Its biggest investments have been in Russia, including a gas plant that began operating in Siberia in December 2017. Russia was once deeply cynical about China’s intentions. But since the crisis in Ukraine it has had to look east for investment in its Arctic regions.

The interest shown by Chinese firms could be good news for many Arctic communities. Few other investors have shown themselves willing to stomach the high costs and slow pay-offs involved in developing the far north…. The main concern of Arctic countries is that China’s ambitions will result in a gradual rewiring of the region’s politics in ways that give China more influence in determining how the Arctic is managed. Greenland is a place to watch. Political elites there favour independence from Denmark but resist taking the plunge because the island’s economy is so dependent on Danish support. The prospect of Chinese investment could change that. Should Greenland become independent, China could use its clout there to help further its own interests at meetings of Arctic states, in the same way that it uses its influence over Cambodia and Laos to prevent the Association of South-East Asian Nations from criticising Chinese behaviour in their neighbourhood.

Excerpts from The Arctic: A Silk Road through Ice, Economist, Apr. 14, 2018, at 37

The Unquenchable Thirst

South-to-North Water Transfer Project. image from wikipedia

Most of the drinking water consumed in Beijing has travelled 1,432km (895 miles), roughly the distance from New York to Orlando, Florida. Its journey begins in a remote and hilly part of central China at the Danjiangkou reservoir, on the bottom of which lies the drowned city of Junzhou. The water gushes north by canal and pipeline, crosses the Yellow river by burrowing under it, and arrives, 15 days later, in the water-treatment plants of Beijing. Two-thirds of the city’s tap water and a third of its total supply now comes from Danjiangkou.

This winter and spring, the reservoir was the capital’s lifeline. No rain or snow fell in Beijing between October 23rd 2017 and March 17th 2018—by far the longest drought on record. Yet the city suffered no supply disruptions, unlike Shanxi province to the west, where local governments rationed water. The central government is exultant, since the project which irrigates Beijing was built at vast cost and against some opposition.

The South-to-North Water Diversion Project—to give the structure its proper name—is the most expensive infrastructure enterprise in the world. It is the largest transfer of water between river basins in history, and China’s main response to its worst environmental threat, which is (despite all the pollution) lack of water.

The route between Beijing and Danjiangkou, which lies on a tributary of the Yangzi, opened in 2014. An eastern route opened in 2013 using the ancient Grand Canal between Hangzhou and the capital. (Jaw-dropping hydrological achievements are a feature of Chinese history.) A third link is planned on the Tibetan plateau, but since that area is prone to earthquakes and landslides, it has been postponed indefinitely…

Downstream from Danjiangkou, pollution has proved intractable. By diverting water from the Yangzi, the project has made the river more sluggish. It has become less able to wash away contaminants and unable to sustain wetlands, which act as sponges and reduce flooding. To compensate for water taken from their rivers, local governments are also building dams wherever they can to divert it back again. Shaanxi province, for example, is damming the Han river to transfer water to its depleted river Wei….Worst of all, the project diverts not only water but money and attention from China’s real water problem: waste and pollution.

Excerpts from Water: Massive Diversiion, Economist, Apr. 7, 2018

Furthest from their Minds: greenhouse gases in Afirca

When sub-Saharan Africa comes up in discussions of climate change, it is almost invariably in the context of adapting to the consequences, such as worsening droughts. That makes sense. The region is responsible for just 7.1% of the world’s greenhouse-gas emissions, despite being home to 14% of its people. Most African countries do not emit much carbon dioxide. Yet there are some notable exceptions.

Start with coal-rich South Africa, which belches out more carbon dioxide than Britain, despite having 10m fewer people and an economy one-eighth the size. Like nearly all of its power plants, many of its vehicles depend on coal, which is used to make the country’s petrol (a technique that helped the old apartheid regime cope with sanctions). A petrochemical complex in the town of Secunda owned by Sasol, a big energy and chemicals firm, is one of the world’s largest localised sources of greenhouse gases.  Zambia is another exception. It burns so much vegetation that its land-use-related emissions surpass those of Brazil, a notorious—and much larger—deforester.

South Africa and Zambia may be extreme examples, but they are not the region’s only big emitters . Nigerian households and businesses rely on dirty diesel generators for 14GW of power, more than the country’s installed capacity of 10GW. Subsistence farmers from Angola to Kenya use slash-and-burn techniques to fertilise fields with ash and to make charcoal, which nearly 1bn Africans use to cook. This, plus the breakneck growth of extractive industries, explains why African forests are disappearing at a rate of 0.5% a year, faster than in South America. Because trees sequester carbon, cutting them counts as emissions in climate accounting.

Other African countries are following South Africa’s lead and embracing coal…A new coal-fired power plant ….Lamu in Kenya is one of many Chinese-backed coal projects in Africa…Africa’s sunny skies and long, blustery coastlines offer near-limitless solar- and wind-energy potential. But what African economies need now are “spinning reserves”, which can respond quickly to volatile demand, says Josh Agenbroad of the Rocky Mountain Institute, a think-tank in Colorado. Fossil fuels deliver this; renewables do not…. Several countries are intrigued by hybrid plants where most electricity is generated by solar panels, but diesel provides the spinning reserves…

Excerpts from  Africa and Climate Change: A Burning Issue, Economist,  Apr. 21, 2018, at 41.

Congo, China and Battery Minerals

Electric truck battery pack between the axles. Image from wikipedia

The demand of cobalt is bound to increase because of the batteries needed to power  electric vehicles (EVs).  Each battery uses about 10kg of cobalt. It is widely known that more than half of the world’s cobalt reserves and production are in one dangerously unstable country, the Democratic Republic of Congo. What is less well known is that four-fifths of the cobalt sulphates and oxides used to make the all-important cathodes for lithium-ion batteries are refined in China. (Much of the other 20% is processed in Finland, but its raw material, too, comes from a mine in Congo, majority-owned by a Chinese firm, China Molybdenum.)

On March 14t, 2018 concerns about China’s grip on Congo’s cobalt production deepened when GEM, a Chinese battery maker, said it would acquire a third of the cobalt shipped by Glencore, the world’s biggest producer of the metal, between 2018 and 2020—equivalent to almost half of the world’s 110,000-tonne production in 2017. This is likely to add momentum to a rally that has pushed the price of cobalt up from an average of $26,500 a tonne in 2016 to above $90,000 a tonne

South Korean and Japanese tech firms and it’s a big concern of theirs that so much of the world’s cobalt sulphate comes from China. Memories are still fresh of a maritime squabble in 2010, during which China restricted exports of rare-earth metals vital to Japanese tech firms. China produces about 85% of the world’s rare earths.

Few analysts expect the cobalt market to soften soon. Production in Congo is likely to increase in the next few years, but some investment may be deterred by a recent five-fold leap in royalties on cobalt. Investment elsewhere is limited because cobalt is almost always mined alongside copper or nickel. Even at current prices, the quantities needed are not enough to justify production for cobalt alone.

But demand could explode if EVs surge in popularity… the use of cobalt for EVs could jump from 9,000 tonnes in 2017 to 107,000 tonnes in 2026.  The resulting higher prices would eventually unlock new sources of supply. But already non-Chinese battery manufacturers are looking for ways to protect themselves from potential shortages. Their best answer to date is nickel.

The materials most commonly used for cathodes in EV batteries are a combination of nickel, manganese and cobalt known as NMC, and one of nickel, cobalt and aluminium known as NCA. As cobalt has become pricier and scarcer, some battery makers have produced cobalt-lite cathodes by raising the nickel content—to as much as eight times the amount of cobalt. This allows the battery to run longer on a single charge, but makes it harder to manufacture and more prone to burst into flames. The trick is to get the balance right.

Strangely, nickel has not had anything like cobalt’s price rise. Nor do the Chinese appear to covet it… Nickel prices plummeted from $29,000 a tonne in 2011 to below $10,000 a tonne 2017…. But by 2025 McKinsey expects EV-related nickel demand to rise 16-fold to 550,000 tonnes.

In theory, the best way to ensure sufficient supplies of both nickel and cobalt would be for prices to rise enough to make mining them together more profitable. But that would mean more expensive batteries, and thus electric vehicles.

Excerpts from The Scramble for Battery Minerals, Economist, Mar. 24, 2018

The Super-Corals

image from wikipedia

By some estimates, half of the world’s coral has been lost since the 1980s. Corals are delicate animals, and are succumbing to pollution and sediment from coastal construction. Also to blame are sewage, farmland run-off and fishing, all of which favour the growth of the big, fleshy algae that are corals’ main competitors for space. (The first two encourage algal growth and the third removes animals that eat those algae.) But the biggest killer is warming seawater. Ocean heatwaves in 2015, 2016 and 2017 finished off an astonishing 20% of the coral on Earth. This is troubling, for countless critters depend on coral reefs for their survival. Indeed, such reefs, which take up just a thousandth of the ocean floor, are home, for at least part of their life cycles, to a quarter of marine species. Losing those reefs would cause huge disruption to the ocean’s ecosystem. So researchers are looking for ways to stop this happening.

A growing number of scientists reckon that an entirely different approach to saving coral is needed. If oceans are changing faster than coral can adapt via the normal processes of evolution, why not, these researchers argue, work out ways to speed up such evolution  One way to do this would be selective breeding. Most species of coral spawn on just one or two nights a year, a process regulated by the lunar cycle, the time of sunset and the temperature of the water. The sperm and eggs released during spawning meet and unite, and the results grow into larvae that search for places where they can settle down and metamorphose into the stone-encased sea-anemone-like polyps that are the adult form. In the wild, the meeting of sperm and egg is random. Some researchers, however, are trying to load the dice. By starting with wild specimens that have survived a period of heat which killed their neighbours, they hope to breed heat resistance into the offspring.

This is the tack taken, for example, by Christian Voolstra of the Red Sea Research Centre in Thuwal, Saudi Arabia. He describes it as “making sure super papa and super mama meet and reproduce”. Corals bred in this way at the Hawaii Institute of Marine Biology, on Oahu, survive in water that is warm enough to kill offspring resulting from normal, random reproduction.

The reason corals die when the surrounding water gets too hot is that the microscopic algae and bacteria which live on and in their tissue, and are their main food sources, are sensitive to small changes in temperature. When stressed by heat these symbionts start producing dangerous oxidants. This causes the polyps to eject them, to ensure short-term survival. The reef thus turns ghostly white—a process called bleaching. Bleached coral is not dead. But unless the temperature then drops, the polyps will not readmit the algae and bacteria, and so, eventually, they do die.

Polyps that survive one such ordeal will, however, fare better if temperatures rise again. The second time around they have acclimatised to the change. Some species, indeed, can pass this resilience on to their offspring by a process called intergenerational epigenesis. The Hawaii Institute’s efforts to develop hardier corals thus include administering a near-death experience to them. Ruth Gates, the institute’s director, says the goal is to create reefs “designed to withstand the future”. The institute’s first such reef will probably be grown inside Biosphere 2, an enclosed ecosystem run by the University of Arizona.

Another approach, taken by the Australian Institute of Marine Science (AIMS) in Queensland, is to crossbreed corals from different places, to create hybrid vigour. The results of such crosses are unpredictable, but some survive heat greater than either of their parents could cope with.

The artificial breeding of corals is, though, constrained by their cyclical breeding habits, so researchers at the Florida Aquarium, on Tampa Bay, are trying to speed the process up. The operators of the aquarium’s “coral ark” nursery stagger lighting and temperature patterns to fool the animals into releasing their gametes on a day of the researchers’ choosing. This also permits the co-mingling of sperm and eggs that would not normally meet, thus allowing new varieties to be created. According to Scott Graves, the aquarium’s boss, half a dozen such varieties show most promise of heat resistance, but the team is generating thousands more, “just like a seed bank”, as a backup.

A coral’s fate is tied so closely to the algae and bacteria which live in its tissues that, as Dr Gates puts it, it is best to think of the whole thing as “a consortium of organisms”. This is why scientists at AIMS are keen also to produce algae that withstand higher temperatures without releasing the oxidants that lead coral to kick them out. They are doing so using a process which Madeleine van Oppen, a researcher at the institute, calls “directed laboratory evolution”. In the past few years her team have grown more than 80 generations of algae, repeatedly culling those organisms most susceptible to heat stress and also to acidification, another curse of a world with more carbon dioxide around than previously. The resulting algae release fewer toxins and photosynthesise better in warm water than do their wild brethren..

[A]fter the trauma of bleaching, polyps do extend a preferential welcome to algae that have greater levels of heat tolerance. His team are thus now using special lights to bleach corals. Polyps “stress hardened” in this way will be planted on wild reefs in coming months…

This raises the question of whether the genomes of coral, algae and bacteria might be edited for greater robustness. According to Dr Voolstra, more than ten laboratories around the world are trying to do so. His own team has successfully inserted genetic material into about 30 larvae of a coral called Acropora millepora. Editing corals’ heat thresholds in this way is, he reckons, about five years away.

Whether they are created by selective breeding or genetic engineering, supercorals, the thinking goes, would not need to be placed on reefs in astronomical numbers… That thought, however, does not please everybody. Some object in principle to the idea of releasing human-modified creatures into the wild, or feel that amelioration of this sort is a distraction from the business of reducing carbon-dioxide emissions. Others have pragmatic concerns—that corals bred to survive warming seas might suffer handicapping trade-offs. So regulators have been cautious. The Great Barrier Reef Marine Park Authority, for example, will probably require that the hybrid organisms AIMS hopes to test in the open reef are removed before they begin spawning. …[T]he alternative, of doing nothing, is the equivalent of “ just throwing our hands up in the air and saying, ‘OK, we’re prepared now not to have coral’.” For the world’s oceans, that loss would be catastrophic.

Excerpts from Accelerating Evolution: Refreshing Reefs, Economist, Mar. 17, 2018, at 75

Sailing the Seas Pollution Free

image from wikipedia

The shipping industry made a historic step toward cleaner air on April 13, 2018 with a deal to cut greenhouse gas emissions by half by 2050 compared to 2008…  Shipping and aviation were excluded from the Paris climate agreement adopted under a United Nations framework in 2015, with governments entrusting the International Maritime Organization (IMO) to come up with a consensus on carbon reduction measures from ocean going vessels.

The aviation sector reached a deal on carbon emissions in 2016, but it took shipping much longer as ocean carriers and regulators considered measures such as the adoption of clean-burning fuels or electric propulsion, slower sailing speeds and hull design improvements at a cost of hundreds of billions of dollars.  The deal puts the agreement into force world-wide, with no other action needed by the regulatory body. The final pact was a compromise between groups and countries including the European Union, China, and other Asia and Pacific nations that pushed for reductions in emissions by as much as 70% and the U.S., Argentina, Brazil and Saudi Arabia, among others, that pushed for lower targets.

Of the 173 IMO-member states, only the U.S. and Saudi Arabia, objected to the draft IMO agreement…Shipping contributes about 3% of total annual carbon dioxide (similar to an economy the size of Germany), or CO2, world-wide emissions, about the same as an economy the size of Germany, according to an IMO study. But vessel emissions are projected to increase by between 50% and 250% by 2050 as global trade grows and carriers add capacity without any action to intervene.  The IMO reductions would aim to cut carbon emissions to half the 2008 carbon dioxide levels.

The emission cuts will also affect thousands of exporters world-wide. Brazil, for example, exports large amounts of iron ore to China and fears strong caps will push up freight rates, helping rival Australia, whose iron exports sail half the distance to China.  Slow steaming, in which ships purposely throttle back to slower speeds, is also an anathema for countries exporting perishable goods like cherries from Chile and meat from Argentina.  Some countries with big shipping registries like the low-lying Marshall Islands, that want to stop the effects of climate change, led the call for strong cuts…The carbon cost comes on top of an estimated $40 billion bill for the industry to cut sulfur emissions, either by using cleaner fuels or by installing a device that treats a ship’s exhaust before releasing it. The deadline for the sulfur cuts in Jan. 1, 2020.

Excerpt from Shipping Regulators Reach Deal to Cut Carbon Emissions, Wall Street Journal,  Apr. 13, 2018

See also who is lobbying who on climate