Category Archives: marine pollution

The Trash Islands

According to a three-year study published in Scientific Reports on March 23, 2018, the mass known as the Great Pacific Garbage Patch is about 1.6 million square kilometers in size — up to 16 times bigger than previous estimates. That makes it more than double the size of Texas.  Ghost nets, or discarded fishing nets, make up almost half the 80,000 metric tons of garbage floating at sea, and researchers believe that around 20% of the total volume of trash is debris from the 2011 Japanese tsunami.

The study — conducted by an international team of scientists with The Ocean Cleanup Foundation, six universities and an aerial sensor company — utilized two aircraft surveys and 30 vessels to cross the debris field.

Along with nets to survey and collect trash, researchers used two six-meter-wide devices to measure medium to large-sized objects. An aircraft was also fitted with advanced sensors to collect 3D scans of the ocean garbage. They ended up collecting a total of 1.2 million plastic samples and scanned more than 300 square kilometers of ocean surface.  The bulk of the pile is made up of larger objects while only 8% of the mass is microplastics, or pieces smaller than 5 millimeters in size.

The patch is so big that last fall environmentalists called on the United Nations to declare the Great Pacific Garbage Patch a country, called “The Trash Isles,” complete with its own passport and currency, called debris…Research scientist Britta Denise Hardesty, who wasn’t involved in this study, said while discarded nets may make up almost half of the findings, the problem may be more nuanced.  It’s estimated 640,000 tons of fishing gear is lost to the marine environment each year.

Excerpts from A massive garbage patch in the middle of the Pacific Ocean is now three times the size of France, CNN, Mar. 24, 2017

Well blowouts and Pipeline breakdowns: Who Profits?

Deepwater Horizon rig, April 21, 2010 image from wikipedia

The global oil spill management market size is projected to grow beyond USD 125.62 billion by 2024. Growing incidents of oil spilling in the past along with severe safety and environmental policies are likely to propel the market over the forecast phase (2016-2024). Also, escalating pipeline and seaborne shipping of crude oil and chemicals could positively impact the market further.  The market is fragmented by technologies, techniques, applications, and regions. Technologies are Pre-oil spill and Post-oil spill. Pre-oil spill segment is divided into double-hull, pipeline, leak detection, blow-out preventers, and others. Double-hulling was the dominant segment in 2015 with highest shares.

Marine trade registers for a majority of petroleum products and natural gas transportation. Mounting demand for crude and petroleum products oil in Europe and Asia Pacific will boost the maritime trade growth further. Post-oil spill segments are mechanical, chemical, biological, and physical. Chemical and mechanical containment and recovery are the techniques used in the industry….In 2015, onshore post-oil spill sector was valued close to 60% of the total market demand. Regions such as Norway, U.S, Mexico, Canada, U.S., China, and Nigeria have observed well blowouts and occurrences of pipeline breakdowns. This could be accredited to huge market diffusion in past

Main regions in the market encompass North America, Europe, Asia Pacific, the Middle East and Africa (MEA), and Central & South America. North America was the leading market for pre-oil spill management. It was estimated at 40.1% of total demand in 2015. This region will potentially face lucrative demand due to production activities and increasing oil & gas discovery. Pre-oil spill management shares in Asia Pacific will gain over USD 21,540 million by 2024…  Top companies in the global oil spill management market include OMI Environmental Solutions, Skim Oil Inc., American Green Ventures Inc., and Spill Response Services.

Excerpts from Global Oil Spill Management Market Size is Projected to Grow Beyond USD 125.62 Billion by 2024, Hexa Research Press Release, Mar. 17, 2018

Cleansing the Oil Tanker

The oil spill that hit the Fujairah coast on January 25, 2018 was the result of tankers illegally cleaning out their holds.  That is according to the general manager of Fujairah port (UAE), Capt Mousa Murad, who has called for 24-hour monitoring of ships to tackle the issue.  “The recent oil spills have been caused by tank cleaning by passing ships,” Capt Murad told The National on Tuesday.  “Especially when tankers change from [carrying] one product to another,” he said, implying that the spills are made up of residue cleaned from within the tanks.  He said the oil “comes from international waters and could hit Dibba, Fujairah or Khor Fakkan.”…

TankerTrackers.com, a pro-bono website that monitors the flow of oil at sea and investigates oil spills, previously suggested that January’s spill was caused by a ship-to-ship transfer.Ship-to-ship transfers happen when a smaller vessel supplies a larger one with oil and spills from overflow can happen through negligence or by accident.

Excerpts from Fujairah oil spill caused by tankers ‘illegally cleaning their holds’ The National UAE Edition, Feb. 14, 2017

Islands of Paradise, Sewage and Garbage

Cesspools—holes in the ground where untreated human waste is deposited—have become a crisis in Hawaii, threatening the state’s drinking water, its coral reefs and the famous beaches that are the lifeblood of its tourist economy.  Sewage from cesspools is seeping into some of Hawaii’s ocean waters, where it has been blamed for infections suffered by surfers and snorkelers. It is also entering the drinking water in part of the state, pushing nitrate levels close to the legal limit.

Hawaii has 88,000 cesspools across its eight major islands, more than any other state. Collectively, they deposit 53 million gallons of raw sewage into the ground every day, according to the state health department. More than 90% of the state’s drinking water comes from groundwater wells…

Replacing all of the state’s cesspools with alternate sewage systems would cost at least $1.75 billion, according to the health department…At one groundwater well, nitrate levels are already at 8.7 milligrams a liter; the legal limit is 10, and the Department of Health estimated that some parts of the aquifer are already over that limit. Environmentalists say they are worried about the potential effect of the water on infants, who can be killed by high levels on nitrates, which are chemicals found in fertilizer and sewage.

Many bathrooms in homes outside Honolulu still pump sewage into nearby holes in the ground.  Yet, some residents resist plans to replace cesspools, worried about expense. In January 2018, Upcountry Maui residents overwhelmed a Department of Public Health meeting, complaining about potential costs.

Excerpt from Hawaii’s Big Headache: Cesspools, Wall Street Journal, Feb. 12, 2018

The Maritime Environment Protection Authority’s (MEPA) of Sri Lanka spent millions of rupees on coastal cleanups last year — a reflection of “spending public money for public waste,” as the MEPA’s General Manager and CEO, Dr. Terney Pradeep Kumara, puts it.

A large proportion of the problem is attributable to inland waste, he notes. “It is not merely what is dumped directly on the beaches, but all that flows through canals and rivers,” he says, pointing out that other triggers, including the fisheries and the tourism sector, are only secondary to inland waste which ends up on the coast. Added to the burden is the garbage which flows from India, Indonesia and Thailand, he says. The MEPA’s role in controlling pollution covers Sri Lanka’s 1640 km coastal belt and extends up to 200 nautical miles to the deep sea, the area, which, according to Dr. Pradeep Kumara, is eight times the size of Sri Lanka’s land area.

The garbage dumped in the coastal vegetation is contributing to the dengue problem…especially the fishing craft, both in use and abandoned, in which water is stagnated.”   Mitigating inland pollution is seen by MEPA authorities as the first step in realising cleaner beaches. They moot a site-specific garbage disposal system, as opposed to a ‘blanket system’. “What works for Colombo will not work for other areas,” says Dr. Pradeep Kumara.

Excerpt Sea of trash: Inland and overseas garbage washes up on Lanka’s beaches, Sunday Times (Sri Lanka), Feb. 11, 2018

The Arctic through China’s Eyes

China on  January 25, 2018 outlined its ambitions to extend President Xi Jinping’s signature Belt and Road Initiative to the Arctic by developing shipping lanes opened up by global warming.  Releasing its first official Arctic policy white paper, China said it would encourage enterprises to build infrastructure and conduct commercial trial voyages, paving the way for Arctic shipping routes that would form a “Polar Silk Road”…China, despite being a non-Arctic state, is increasingly active in the polar region and became an observer member of the Arctic Council in 2013.

Among its increasing interests in the region is its major stake in Russia’s Yamal liquefied natural gas project which is expected to supply China with four million tonnes of LNG a year.

Shipping through the Northern Sea Route would shave almost 20 days off the regular time using the traditional route through the Suez Canal. COSCO Shipping has also previously sailed vessels through the Arctic’s northeast passage.

China’s increasing prominence in the region has prompted concerns from Arctic states over its long-term strategic objectives, including possible military deployment…The white paper said China also eyes development of oil, gas, mineral resources and other non-fossil energies, fishing and tourism in the region. China’s Belt and Road initiative aims to connect China to Europe, the Middle East and beyond via massive infrastructure projects across dozens of countries…

Excerpts from China unveils vision for ‘Polar Silk Road’ across Arctic, Reuters, Jan. 25, 2018

Turning Oceans into Muck

image from http://recon.sccf.org/events

Oxygen is critical to the health of the planet. It affects the cycles of carbon, nitrogen and other key elements, and is a fundamental requirement for marine life from the seashore to the greatest depths of the ocean. Nevertheless, deoxygenation is worsening in the coastal and open ocean. This is mainly the result of human activities that are increasing global temperatures (CO2-induced warming) and increasing loads of nutrients from agriculture, sewage, and industrial waste, including pollution from power generation from fossil fuels and biomass.

Facts: During the past 50 years the area of low oxygen water in the open ocean has increased by 4.5 million km2. The world’ oceans are now losing approximately  1 gigaton of oxygen each year.

The Millennium Ecosystem Assessment released by the UN in 2005 reported that nitrogen containing compounds (e.g. sewage, fertilizers) release into the oceans grew 80 percent from 1860 to 1990.

Increasing temperatures will reduce the capacity of the ocean to hold oxygen in the future;
Oxygen deficiency is predicted to worsen in estuaries, coastal areas and oxygen minimum zones in the open ocean;
The ocean’s capacity to produce oxygen will be reduced in the future.
Habitat loss is expected to worsen, leading to vertical and horizontal migration of species;
Oxygen deficiency will alter biogeochemical cycles and food webs;
Lower oxygen concentrations are projected to result in a decrease in reproductive capacity and biodiversity loss;
There are important local decreases of commercially important species and aquaculture production;
Harmful Algal Blooms will be exacerbated from nutrients released in bottom waters due to hypoxia (e.g. in the Baltic Sea);
Reduced ocean oxygen concentrations will lead to an increase in greenhouse gas emissions, thereby initiating feedbacks on climate change;

Excerpts from UNESCO, Jan. 2018

View Extensive Abstract

Background paper (pdf)

Global Ocean Oxygen Network: Through the participation of high level scientists from across the world, the IOC expert group, the Global Ocean Oxygen Network GO2NE, established in 2016, is committed to providing a global and multidisciplinary view of deoxygenation, with a focus on understanding its multiple aspects and impacts.

Jumping off the Edge into the Ocean: Hydrazine

Europe’s space agency is defending plans to launch two satellites that would drop a rocket stage likely to contain highly toxic fuel in some of the most ecologically sensitive waters of the Canadian Arctic… North Water Polynya between Baffin Island and Greenland Inuit have said those plans treat seas…as a garbage dump.

On October 13, 2017, the European Space Agency plans to launch the Sentinel 5P satellite, an environmental probe designed to monitor trace gases in the atmosphere. A second launch of a similar satellite is planned for 2018.  The second stage of both rockets are expected to splash down in water that is part of Canada’s exclusive economic zone.  Both will use Soviet-era rockets fuelled by hydrazine. The fuel is a carcinogen and causes convulsions, nervous system damage, kidney and liver failure in humans.

Hvistendahl, representative of European Space Agency, said unused fuel will be destroyed before it reaches the ocean. Re-entry temperatures are much higher than hydrazine’s boiling point, he said.  “The structural parts lose their integrity and, by melting, the destruction of the stage occurs. Six kilometres above ground the propellant components have completely burnt up.”

Michael Byers, a Canadian academic who has just published research on the launch in a top Arctic journal, questioned those assurances.  “The ESA is making lots of assumptions about what happens to the residual (fuel) in these returning rocket stages,” he said Friday in an email. “Unless they have real science that proves their assumptions, they should not be taking chances with Inuit lives and the Arctic environment.”  In his paper, published in Polar Record from Cambridge University, Byers cites extensive evidence suggesting that instead of burning, hydrazine forms fine droplets that settle on the Earth below.  Byers quotes a UN report that found “the products of combustion and non-combusted remains of fuel and oxidants falling from the height of 20–100 kilometre spread and land over thousands of square kilometres.”The rocket stage could be carrying up to a tonne of unused hydrazine as it falls, the paper says.  It will drop into the North Water Polynya, an 85,000-square-kilometre ocean that is free of ice year-round. It shelters most of the world’s narwhal, as well as about 14,000 beluga whales and 1,500 walrus, bowhead whales, polar bears, seals and tens of millions of seabirds…

In his paper, Byers points out there have been 10 such launches dropping rocket stages into the North Water Polynya over the last 15 years.  Nearly every country in the world, including Russia, has stopped using hydrazine. He said Europe launched a very similar satellite earlier this year with a rocket using a much safer fuel.

Excerpts from European satellite splashdown in Canadian Arctic probably toxic, Canadian Press, Oct. 6, 2017.