Tag Archives: batteries

How to Navigate the Rubble: DARPA

Rescue robot

Imagine a natural disaster scenario, such as an earthquake, that inflicts widespread damage to buildings and structures, critical utilities and infrastructure, and threatens human safety. Having the ability to navigate the rubble and enter highly unstable areas could prove invaluable to saving lives or detecting additional hazards among the wreckage.

Dr. Ronald Polcawich, a DARPA program manager in the Microsystems Technology Office (MTO):”There are a number of environments that are inaccessible for larger robotic platforms. Smaller robotics systems could provide significant aide, but shrinking down these platforms requires significant advancement of the underlying technology.”

Technological advances in microelectromechanical systems (MEMS), additive manufacturing, piezoelectric actuators, and low-power sensors have allowed researchers to expand into the realm of micro-to-milli robotics. However, due to the technical obstacles experienced as the technology shrinks, these platforms lack the power, navigation, and control to accomplish complex tasks proficiently

To help overcome the challenges of creating extremely [Size, Weight and Power] SWaP-constrained microrobotics, DARPA is launching a new program called SHort-Range Independent Microrobotic Platforms (SHRIMP). The goal of SHRIMP is to develop and demonstrate multi-functional micro-to-milli robotic platforms for use in natural and critical disaster scenarios. To achieve this mission, SHRIMP will explore fundamental research in actuator materials and mechanisms as well as power storage components, both of which are necessary to create the strength, dexterity, and independence of functional microrobotics platforms.

“The strength-to-weight ratio of an actuator influences both the load-bearing capability and endurance of a micro-robotic platform, while the maximum work density characterizes the capability of an actuator mechanism to perform high intensity tasks or operate over a desired duration,” said Polcawich. “

Excerpts from Developing Microrobotics for Disaster Recovery and High-Risk Environments: SHRIMP program seeks to advance the state-of-the art in micro-to-milli robotics platforms and underlying technology, OUTREACH@DARPA.MIL, July 17, 2018

The Scramble for Lithium

Lithium rich brine  Uyuni, Bolivia .  The lithium-rich brine is concentrated by pumping it into solar evaporation ponds. image from wikipedia

SQM, Chile’s biggest lithium producer [has]Its headquarters in the military district of Santiago bears no name. The man who for years ran the business, Julio Ponce, is the former son-in-law of the late dictator, Augusto Pinochet. He quit as chairman in 2015, during an investigation into SQM for alleged tax evasion. (The company is co-operating with the inquiry.) Last month it emerged that CITIC, a Chinese state-controlled firm, may bid for part of Mr Ponce’s controlling stake in SQM, as part of China’s bid to secure supplies of a vital raw material…

SQM is part of a global scramble to secure supplies of lithium by the world’s largest battery producers, and by end-users such as carmakers. That has made it the world’s hottest commodity. The price of 99%-pure lithium carbonate imported to China more than doubled in the two months to the end of December, to $13,000 a tonne…

The industry is fairly concentrated, which adds to the worry. Last year Albermarle, the world’s biggest lithium producer, bought Rockwood, owner of Chile’s second-biggest lithium deposit. It and three other companies—SQM, FMC of America and Tianqi—account for most of the world supply of lithium salts, according to Citigroup, a bank. What is more, a big lithium-brine project in Argentina, run by a joint venture of Orocobre, an Australian miner, and Toyota, Japan’s largest carmaker, is behind schedule. Though the Earth contains plenty of lithium, extracting it can be costly and time-consuming, so higher prices may not automatically stimulate a surge in supply.

Demand is also on the up. At the moment, the main lithium-ion battery-makers are Samsung and LG of South Korea, Panasonic and Sony of Japan, and ATL of Hong Kong. But China also has many battery-makers…Tesla Motors, an American maker of electric cars founded by Elon Musk, a tech tycoon, is also on the prowl. It is preparing this year to start production at its “Gigafactory” in Nevada, which it hopes will supply lithium-ion batteries for 500,000 cars a year within five years….[I]n August Bacanora, a Canadian firm, said it had signed a conditional agreement to supply Tesla with lithium hydroxide from a mine that it plans to develop in northern Mexico. Bacanora’s shares jumped on the news—though analysts noted that shipping fine white powder across the United States border would need careful handling.Bigger carmakers also have a growing appetite for lithium…

Another big source of demand may be for electricity storage. The holy grail of renewable electricity is batteries cheap and capacious enough to overcome the intermittency of solar and wind power—for example, to store enough power from solar panels to keep the lights on all night.

Excerpts from  An increasingly precious metal, Economist, January 16, 2016

The Power of a Battery: distributed energy

Microgrid

Who needs the power grid when you can generate and store your own electricity cheaply and reliably? Such a world is drawing nearer: good news for consumers, but a potential shock for utility companies. That is the conclusion of a report this week by Morgan Stanley, an investment bank, which predicts that ever-cheaper solar and other renewable-energy sources, combined with better and more plentiful batteries, will allow many businesses and other electricity users to cut the cord on their electricity providers.

Tesla Motors, an American maker of electric cars, recently said it will build a “gigafactory”, which by 2020 will turn out as many lithium-ion batteries as the whole world produced last year (2013). These batteries can do more than power cars; they can also store electricity which is produced when it is not needed, and discharge it when it is….

In poor, volt-starved countries, a lorry-mounted aircraft engine can become a mobile gas-fired power station. GE recently installed 24 such units in Algeria, providing 30MW of power. Local difficulties meant it took six months; that was fast by the standards of big power stations, “but we could have done it in ten days,” says Lorraine Bolsinger, who heads GE’s new distributed-generation business….

Morgan Stanley reckons that if Tesla’s factory provides the cheap batteries it promises, Californian households will be able to run off a solar-plus-storage system costing just $350 a year. Buying electricity off the grid may cost them around $750 a year by then.

Morningstar, an investment-research firm, says that though distributed generation represents only 1% of America’s installed capacity now (compared with 20% in Germany), it could make up a third by 2017 and could “kill” utilities in their current form. Small-scale producers will dump their surplus power on the market at prices below those at which the utilities can recoup their cost of capital—and thus pay to maintain the grid.

America’s Electric Power Research Institute last month produced a paper highlighting the dangers of an unplanned move to distributed generation, using Germany as an example. The dash for renewables there has strained the power network and made life hard for utilities. This week one of the country’s largest, RWE, announced that it made a net loss of €2.8 billion ($3.8 billion) in 2013, its first annual loss in more than 60 years, as the rising supply of electricity from (subsidised) renewable sources undercut its prices.

Distributed generation: Devolving power, Economist,  Mar. 8, 2014, at 69

For the Love of Batteries: Storing Electricity

Districht heating accumulation tower of Theiss, near Krems an der Donau, Lower Austria with 50000 cubic meters volume.  Image from wikipedia

Batteries are a hugely important technology. Modern life would be impossible without them. But many engineers find them disappointing and feel that they could be better still. Produce the right battery at the right price, these engineers think, and you could make the internal-combustion engine redundant and usher in a world in which free fuel, in the form of wind and solar energy, was the norm. That really would be a revolution.

It is, however, a revolution that people have been awaiting a long time. And the longer they wait, the more the doubters wonder if it will ever happen. The Joint Centre for Energy Storage Research (JCESR)...hopes to prove the doubters wrong. It has drawn together the best brains in energy research from America’s national laboratories and universities, along with a group of interested companies. It has money, too. It has just received a grant of $120m from the country’s Department of Energy. The aim, snappily expressed, is to make batteries five times more powerful and five times cheaper in five years…

The first test of any combination of substances that comes out of the Materials Project, or anywhere else, will be to beat the most successful electricity-storage device to emerge over the past 20 years: the lithium-ion battery. Such batteries are now ubiquitous. Most famously, they power many of the electric and hybrid-electric cars that are starting to appear on the roads. More infamously, they have a tendency to overheat and burn. Two recent fires on board Boeing’s new 787 Dreamliners may have been caused by such batteries or their control systems. Improving on lithium-ion would be a feather in the cap of any laboratory… McKinsey, a business consultancy, reckons that lithium-ion batteries might be competitive by 2020 but… there is still a lot of work to do. Moreover, pretenders to lithium-ion’s throne are already emerging.

The leader is probably the lithium-air battery…The lithium-air approach has consequently generated a lot of hype. It has problems, though, which will take years of research to resolve. Lithium-air batteries are hard to recharge and extremely temperamental. The chemical reaction which powers them is not far removed from spontaneous combustion. Lithium-air batteries are thus highly inflammable and require heavy safety systems to stop them catching fire. Luckily, the researchers at JCESR have other irons in the fire. One is the multivalent-ion battery….

The second transformation, besides electric cars, that better batteries might bring about is what is known as grid-scale storage. If this could be done cheaply enough it would revolutionise the economics of wind and solar energy by making the main problem with such sources—that the sun does not always shine and the wind does not always blow—irrelevant. To this end, Argonne’s researchers are working on what are known as flow batteries…Unlike batteries based on cells, flow batteries can be made very large indeed, so they can store vast amounts of energy. Hence the idea of using them to collect surplus power from wind turbines and solar panels and squirrel it away for use later. But their water-based electrolytes limit their potential…

A battery-driven world, then, would electrify parts of the economy, such as transport, that have been recalcitrant, and would encourage the shift from costly (and polluting) fossil fuels to “fuels” such as sunlight that cost nothing. As a manifesto for a revolution, that takes some beating. The question is, will the revolutionaries win, or will the ancien régime prevail?

Excerpts, The future of energy: Batteries included?, Economist, Feb. 2, 2013, at 67