Tag Archives: biodiversity loss

An Earth Bank of Codes: who owns what in the biological world

image from wikipedia

A project with the scale and sweep of the original Human Genome Project…should be to gather DNA sequences from specimens of all complex life on Earth. They decided to call it the Earth BioGenome Project (EBP).

At around the same time as this meeting, a Peruvian entrepreneur living in São Paulo, Brazil, was formulating an audacious plan of his own. Juan Carlos Castilla Rubio wanted to shift the economy of the Amazon basin away from industries such as mining, logging and ranching, and towards one based on exploiting the region’s living organisms and the biological information they embody. At least twice in the past—with the businesses of rubber-tree plantations, and of blood-pressure drugs called ACE inhibitors, which are derived from snake venom—Amazonian organisms have helped create industries worth billions of dollars. ….

For the shift he had in mind to happen, though, he reasoned that both those who live in the Amazon basin and those who govern it would have to share in the profits of this putative new economy. And one part of ensuring this happened would be to devise a way to stop a repetition of what occurred with rubber and ACE inhibitors—namely, their appropriation by foreign firms, without royalties or tax revenues accruing to the locals.

Such thinking is not unique to Mr Castilla. An international agreement called the Nagoya protocol already gives legal rights to the country of origin of exploited biological material. What is unique, or at least unusual, about Mr Castilla’s approach, though, is that he also understands how regulations intended to enforce such rights can get in the way of the research needed to turn knowledge into profit. To that end he has been putting his mind to the question of how to create an open library of the Amazon’s biological data (particularly DNA sequences) in a way that can also track who does what with those data, and automatically distribute part of any commercial value that results from such activities to the country of origin. He calls his idea the Amazon Bank of Codes.

Now, under the auspices of the World Economic Forum’s annual meeting at Davos, a Swiss ski resort, these two ideas have come together. On January 23, 2018 it was announced that the EBP will help collect the data to be stored in the code bank. The EBP’s stated goal is to sequence, within a decade, the genomes of all 1.5m known species of eukaryotes. ..That is an ambitious timetable. The first part would require deciphering more than eight genomes a day; the second almost 140; the third, about 1,000. For comparison, the number of eukaryotic genomes sequenced so far is about 2,500…

Big sequencing centres like BGI in China, the Rockefeller University’s Genomic Resource Centre in America, and the Sanger Institute in Britain, as well as a host of smaller operations, are all eager for their share of this pot. For the later, cruder, stages of the project Complete Genomics, a Californian startup bought by BGI, thinks it can bring the cost of a rough-and-ready sequence down to $100. A hand-held sequencer made by Oxford Nanopore, a British company, may be able to match that and also make the technology portable…..It is an effort in danger of running into the Nagoya protocol. Permission will have to be sought from every government whose territory is sampled. That will be a bureaucratic nightmare. Indeed, John Kress of the Smithsonian, another of the EBP’s founders, says many previous sequencing ventures have foundered on the rock of such permission. And that is why those running the EBP are so keen to recruit Mr Castilla and his code bank.

The idea of the code bank is to build a database of biological information using a blockchain. Though blockchains are best known as the technology that underpins bitcoin and other crypto-currencies, they have other uses. In particular, they can be employed to create “smart contracts” that monitor and execute themselves. To obtain access to Mr Castilla’s code bank would mean entering into such a contract, which would track how the knowledge thus tapped was subsequently used. If such use was commercial, a payment would be transferred automatically to the designated owners of the downloaded data. Mr Castilla hopes for a proof-of-principle demonstration of his platform to be ready within a few months.

In theory, smart contracts of this sort would give governments wary of biopiracy peace of mind, while also encouraging people to experiment with the data. And genomic data are, in Mr Castilla’s vision, just the start. He sees the Amazon Bank of Codes eventually encompassing all manner of biological compounds—snake venoms of the sort used to create ACE inhibitors, for example—or even behavioural characteristics like the congestion-free movement of army-ant colonies, which has inspired algorithms for co-ordinating fleets of self-driving cars. His eventual goal is to venture beyond the Amazon itself, and combine his planned repository with similar ones in other parts of the world, creating an Earth Bank of Codes.

[I]f the EBP succeeds, be able to use the evolutionary connections between genomes to devise a definitive version of the tree of eukaryotic life. That would offer biologists what the periodic table offers chemists, namely a clear framework within which to operate. Mr Castilla, for his part, would have rewritten the rules of international trade by bringing the raw material of biotechnology into an orderly pattern of ownership. If, as many suspect, biology proves to be to future industries what physics and chemistry have been to industries past, that would be a feat of lasting value.

Excerpts from Genomics, Sequencing the World, Economist, Jan. 27, 2018

Unjustifiable Extinctions

Hydrostachys polymorpha. image from http://www.zimbabweflora.co.zw/speciesdata/image-display.php?species_id=124820&image_id=2

The world’s botanic gardens contain at least 30% of all known plant species, including 41% of all those classed as ‘threatened’, according to the most comprehensive analysis to date of diversity in ‘ex situ’ collections: those plants conserved outside natural habitats.

The study, in September 2017 in the journal Nature Plants, found that the global network of botanic gardens conserves living plants representing almost two-thirds of plant genera and over 90% of plant families.  However, researchers from the University of Cambridge discovered a significant imbalance between temperate and tropical regions. The vast majority of all plants species grown ex situ are held in the northern hemisphere. Consequently, some 60% of temperate plant species were represented in botanic gardens but only 25% of tropical species, despite the fact that the majority of plant species are tropical.

For the study, researchers analysed datasets compiled by the Botanic Gardens Conservation International (BGCI)….

“The global network of botanic gardens is our best hope for saving some of the world’s most endangered plants,” said senior author Dr Samuel Brockington, a researcher at Cambridge’s Department of Plant Sciences as well as a curator at the University’s own Botanic Garden.
“Currently, an estimated one fifth of plant diversity is under threat, yet there is no technical reason why any plant species should become extinct.   “If we do not conserve our plant diversity, humanity will struggle to solve the global challenges of food and fuel security, environmental degradation, and climate change.”

The plants not currently grown in botanic gardens are often more interesting than those that are, say the researchers. Hydrostachys polymorpha, for example, an African aquatic plant that only grows in fast flowing streams and waterfalls, or the tiny parasitic plant Pilostyles thurberi – only a few millimetres long, it lives completely within the stem tissue of desert shrubs.  Species from the most ancient plant lineages, termed ‘non-vascular’ plants, are currently almost undocumented in botanic gardens – with as few as 5% of all species stored in the global network. These include plants such as the liverworts and mosses.

“Non-vascular species are the living representatives of the first plants to colonise the land,” said Brockington. “Within these plants are captured key moments in the early evolutionary history of life on Earth, and they are essential for understanding the evolution of plants”

Excerpts from World’s botanic gardens contain a third of all known plant species, and help protect the most threatened, Press Release of Botanic Gardens Conservation International, Sept. 25, 2016

How to Protect Marine Biodiversity in the Open Seas

deep blue sea

The United Nations General Assembly adopted a resolution on May 2015 (reissued on June 2015) aimed at drafting a legally binding international treaty for the conservation of marine biodiversity and to govern the mostly lawless high seas beyond national jurisdiction.The resolution was the result of more than nine years of negotiations by an Ad Hoc Informal Working Group, which first met in 2006.

If and when the treaty is adopted, it will be the first global treaty to include conservation measures such as marine protected areas and reserves, environmental impact assessments, access to marine genetic resources and benefit sharing, capacity building and the transfer of marine technology.

The High Seas Alliance (HSA), a coalition of some 27 non-governmental organisations (NGOs), played a significant role in pushing for negotiations on the proposed treaty and has been campaigning for this resolution since 2011…The General Assembly will decide by September of 2018 on the convening of an intergovernmental conference to finalise the text of the agreement and set a start date for the conference….

A new treaty would help to organise and coordinate conservation and management [in the high seas].  That includes the ability to create fully protected marine reserves that are closed off to harmful activities. Right now there is no way to arrange for such legally binding protections, she added….In a statement released Friday, the HSA said the resolution follows the Rio+20 conference in 2012 where Heads of State committed to address high seas protection.The conference came close to agreeing to a new treaty then, but was prevented from doing so by a few governments which have remained in opposition to a Treaty ever since.

The U.N. Convention on the Law of the Sea (UNCLOS), which is recognised as the “constitution” for global ocean governance, has a broad scope and does not contain the detailed provisions necessary to address specific activities, nor does it establish a management mechanism and rules for biodiversity protection in the high seas.  Since the adoption of UNCLOS in 1982, there have been two subsequent implementing agreements to address gaps and other areas that were not sufficiently covered under UNCLOS, one related to seabed mining and the other related to straddling and highly migratory fish stocks, she added. This new agreement will be the third implementing agreement developed under UNCLOS….

The “high seas” is the ocean beyond any country’s exclusive economic zone (EEZ) ‑ amounting to 64 percent of the ocean…

Excerpts from Thalif Deen, U.N. Takes First Step Towards Treaty to Curb Lawlessness in High Seas, IPS, June 19 2015

Demand for Gold Causes Deforestation

gold mine

The global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests.

The study Global demand for gold is another threat for tropical forests published in Environmental Research Letters provides a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs)….Approximately 1680 km2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis….In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ~32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems, spread well beyond the actual mining sites.

Excerpt from Abstract, Global demand for gold is another threat for tropical forests

Amazon Region Protected Areas: the 215 Million Fund

soybean field

Brazil’s government, the World Wildlife Fund and various partners are expected to unveil an agreement that would establish a $215 million fund for conservation of protected jungle in the Amazon rainforest.  The fund, which seeks to ensure conservation of over 90 protected areas in the Amazon, comes as renewed developmental pressures mount in the region, resulting last year in an uptick in deforestation figures after years of record lows.

Under the terms of the agreement, partners in the fund will make annual contributions to help Brazil meet financing needs for the protected lands, whose combined area totals more than 60 million hectares, or an area 20 percent larger than Spain.  Contributions, partners said, will be contingent upon conditions required of Brazil, including audits of the government body that will administer the fund and continued staffing and financing of government offices required to administer the rainforest areas.

Money from the fund would be used for a range of basic conservation measures, including fences and signs to delineate protected areas and to pay for vehicles used to patrol them…

Brazil’s government through 2012 made large inroads against deforestation, largely through strict environmental enforcement and financial measures that blocked credit for companies and individuals caught doing business with loggers, ranchers, farmers or others known to exploit illegally cleared land.

In recent years, however, the government has made changes to environmental agencies and regulations that critics say make it easier for would-be developers to target protected areas. The government has also altered borders of some parkland to make way for infrastructure projects, including hydroelectric dams on various Amazon tributaries.

Financing for the new fund, expected to pay out over 25 years, was secured from private and public sources including the German government, the Inter-American Development Bank, the World Bank, philanthropists and the Amazon Fund, an existing facility financed mostly by the Norwegian government and administered by Brazil’s national development bank.

Together, the forest zones targeted by the fund are known as the Amazon Region Protected Areas, or ARPA, a program established in 2002 to coordinate financing and conservation strategy in the region.

Whereas previous financing for the effort relied on cumulative fundraising efforts, partners this time agreed to an all-or-nothing approach, borrowed from private-sector financing practices, to build momentum toward a target total. The $215 million is the amount calculated as necessary to help the Brazilian government, over the 25 years, become self-sufficient in terms of financing the rainforest areas.

 

Excerpts from  PAULO PRADA, Donors commit $215 million for Amazon conservation in Brazil, Reuters, May 21, 2014

Seeking No Net Biodiversity Loss; the offsets standards

“Companies are increasingly seeking to demonstrate ‘no net loss of biodiversity’ as a result of their activities, stimulated by new regulations, recent requirements from investors and a more sophisticated approach to handling social and environmental risk”, said Kerry ten Kate, UK-based director of-