Tag Archives: biological covert war

Robo-Cells Killing Bacteria

Fuligo septica, the "dog vomit" slime mold. image from wkipedia

Johns Hopkins University researchers are setting out to design and test self-directed microscopic warriors that can locate and neutralize dangerous strains of bacteria…[The goal] s to devise a prototype biocontrol system that can dispatch single-cell fighters to track down and engulf specific pathogens, rendering them harmless. The funding was awarded by the Defense Advanced Research Projects Agency, commonly called DARPA.

Possible first targets in this proof-of-concept project include Legionella, the bacteria that cause Legionnaire’s disease; and Pseudomonas aeruginosa, a bacterial strain that is the second-leading cause of infections found in hospitals. If the project succeeds, these tiny infection-fighters might one day be dispatched to curtail lethal microbes lurking in medical settings. Eventually, they could also be used to cleanse contaminated soil or possibly defend against bioterror attacks.

An important goal of the project is that each of the proposed soldier cells must carry out its own mission without relying on step-by-step commands from a remote human operator.

“Once you set up this biocontrol system inside a cell, it has to do its job autonomously, sort of like a self-driving car,” said Pablo A. Iglesias.”…In a similar way, the biocontrol systems we’re developing must be able to sense where the pathogens are, move their cells toward the bacterial targets, and then engulf them to prevent infections among people who might otherwise be exposed to the harmful microbes.”

These experts plan to biologically embed search-and-surround orders within a familiar type of amoeba cell called Dictyostelium discoideum [slime mold]. These widely studied microbes, commonly found in damp soil such as riverbeds, typically engulf and dine on bacteria, which are much smaller.  “These amoebas possess receptors that can detect the biochemical ‘scents’ emitted by bacteria,” Robinson said. “Our goal is to use concepts from control theory to design a ‘super amoeba’ that can recognize a particular bad guy—a specific type of disease-causing bacteria—and then move toward and attack these target cells.”  Robinson added: “The plan is to develop amoebas that are super-sensitive to these bacterial signals and home in on them as though they were a plate piled high with fresh chocolate chip cookies. The goal is to make these amoebas behave as though this is the most natural thing to do.”.. But if the project is successful, the researchers say the single-cell fighters could eventually be introduced into the cooling and ventilation system in a hospital, where they could feast on the bacteria that are currently causing dangerous infections. One possible method of introducing the infection fighters into such systems might be through use of a spray solution.

Iglesias noted that initial efforts will focus on bacteria lurking outside, not within the body.  “In this contract, we are not targeting bacteria in human blood,” he said, “but the hope is that the techniques we develop would ultimately be useful for that.”

Excerpts from Phil Sneiderman, Johns Hopkins researchers aim to design self-driving cells to pursue deadly bacteria, John Hopkins University, Feb. 2, 2016

60 Days to Save the World

A dendritic cell. image from wikipedia

The US military supports US Government responses to public health emergencies such as Ebola, which can cause regional destabilization and spread through global travel. Warfighters must also operate in regions where diseases like chikungunya and dengue are endemic, and even seemingly mild challenges like seasonal influenza affect force readiness. In addition to these naturally occurring threats, terrorists and other potential adversaries have a growing palette of biological tools to engineer new biological threats. Existing capabilities to respond to an outbreak and develop therapeutics often take years or even decades to achieve results. Recent examples of public health emergencies have demonstrated a national and global inability to develop effective preventive or therapeutic solutions in a relevant timescale when an infectious threat emerges. The threat of infectious agents on US and global national security can be mitigated if the DoD has the capability to rapidly deploy and impart near-immediate immunity to military personnel and civilian populations for known and newly emerging pathogens.

The goal of P3 is to achieve an integrated capability that can deliver pandemic prevention countermeasures to patients within 60 days of an outbreak. P3 aims to revolutionize outbreak response by enabling rapid discovery, characterization, production, and testing of efficacious medical countermeasures. P3 will innovate in the following areas: (1) Generation of virus stock (including viral unknowns); (2) Rapid evolution of antibody candidates; and (3) Gene-encoded antibody delivery methods.

Excerpts from  The Biological Technologies Office (BTO) of the Defense Advanced Research Projects Agency (DARPA) Proposers Day March 2, 2017 

Biological Weapons Proliferation: spreading desease

mers

The World Health Organisation (WHO), animal health and national defence officers called for wider international co-operation to avoid the spread of animal diseases that could be used as biological weapons.  Sixty percent of human diseases come from animal agents and 80% of the agents that could be used for bio-terrorism are of animal origin, said Bernard Vallat, director general of the World Organisation for Animal Health (OIE).

“History has shown animal diseases have often been used as weapons before. Advances in genetics can now make them even more harmful. So we are calling for further investment to be made at national level on bio-security,” Vallat said at a conference on biological threat reduction.  Diseases have spread from animals to humans for millennia, with latest examples including the bird flu virus that has killed hundreds of people around the globe.

The OIE and the WHO warned animal disease agents could escape naturally, accidentally but also intentionally from laboratories, to be used as bio-weapons….Security breaches involving animal diseases are not rare.  The Pentagon said in May 2015 and June the US military had sent live samples of anthrax, which can be used as biological weapon, to five countries outside the United States and to dozens of US labs.

Excerpts from Beware of animal diseases as biological weapons, health experts say, Reuters, June 30, 2015

On-Demand Germs: Bio-engineering for defense or offense

Parallel telomere quadruple

From the DARPA website

The development of increasingly sophisticated techniques and tools to sequence, synthesize and manipulate genetic material has led to the rapidly maturing discipline of synthetic biology. …[But] The costs of maintaining required environmental controls and detecting and compensating for genetic alterations are substantial and severely limit the widespread application of synthetic biology to U.S. national security missions.

To help address these challenges, DARPA has created the Biological Robustness in Complex Settings (BRICS)  BRICS seeks to develop the fundamental understanding and component technologies needed to increase the biological robustness and stability of engineered organisms while maintaining or enhancing the safe application of those organisms in complex biological environments. The goal is to create the technical foundation for future engineered biological systems to achieve greater biomedical, industrial and strategic potential.

“By making these systems more robust, stable and safe, BRICS seeks to harness the full range of capabilities at the intersection of engineering and biology,” said Justin Gallivan, DARPA program manager. “These capabilities could include efficient on-demand bio-production of novel drugs, fuels, sensors and coatings; or engineered microbes able to optimize human health by treating or preventing disease.”

Excerpt from BUILDING THE FOUNDATION FOR FUTURE SYNTHETIC BIOLOGY APPLICATIONS WITH BRICS
July 29, 2014

Predator Bacteria: the DARPA program

melioidosis

The  Pathogen Predators Program of DARPA would represent a significant departure from conventional antibacterial therapies that rely on small molecule antibiotics. While antibiotics have been remarkably effective in the past, their widespread use has led to the emergence of antibiotic-resistant bacterial infections that are difficult or impossible to treat. In vitro studies have shown that predators such as Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus can prey upon more than one hundred different human pathogens and will also prey on multi-drug resistant bacteria.

The Pathogen Predators program will answer three fundamental questions about bacterial predators:

1) Are predators toxic to recipient (host) organisms?
2) Against what pathogens (prey) are predators effective?
3) Can pathogens develop resistance to predation?

This list [of bacteria that could be killed by predator bacteria] includes NIAID (National Institute of Allergy and Infectious Diseases) Category A and B threats to national security:

NIAID Category A and B
Yersinia pestis (i.e. plague)
Francisella tularensis (i.e. tularemia)
Brucella species
Coxiella burnetii (i.e. Q fever)
Rickettsia prowazekii (i.e.  typhus)
Burkholderia mallei (i.e. glanders)
Burkholderia pseudomallei (i.e. melioidosis)

Source DARRA (pdf)

Covert Biological Warfare, the unknown bioengineered disease outbreak

The following is from a Press Release of the  US Department of Defense

The global nature of terrorism and the growing potential of nations and individuals to acquire weapons of mass destruction drive the Defense Department’s effort to counter these threats, the assistant secretary of defense for nuclear, chemical and biological defense programs said….

To keep terrorist groups from getting access to materials needed to construct biological weapons, he said, DOD has helped strengthen biosecurity at laboratories in the United States.   “We also have launched a program working with partners around the world to make sure public health and veterinary laboratories that have dangerous pathogen strains that cause diseases like anthrax and ebola are better secured,” the assistant secretary said.  Some kinds of biological attacks by terrorists, he said, could look at first just like natural disease outbreaks.  “We might not know about it until people or even animals show up sick or start dying,” he said, “so the best thing you can do [is] to have a global early warning system for biological attacks, whether they are deliberate or natural.”

The Defense Department has several programs that involve global biosurveillance, Weber said, including the Global Emerging Infections Surveillance and Response System, or GEIS, a division of the Armed Forces Health Surveillance Center.  For 50 years, he said, DOD has had a network of biomedical laboratories in countries around the world that are part of this system.  The laboratories allow DOD scientists to develop drugs for rare diseases that are not endemic in the United States but that may be in countries where U.S. forces are deployed, Weber said.  “…“The Department of Defense has a liaison officer assigned to WHO Headquarters,” he said, “and recently the U.S. government signed an agreement with WHO [to fund] some efforts to enhance capabilities around the world to monitor infectious diseases.”

“With the revolution in biotechnology … the range of threats is potentially infinite,” Weber said, “so we need a rapid response capability after exposure, once we identify what is causing the disease, to develop a drug quickly, within weeks or days, rather than the years … it takes now.”..“Agencies like DARPA [Defense Advanced Research Projects Agency] and the Defense Threat Reduction Agency have been very active in funding biodefense research,” Weber said.  The focus, he said, is on finding rapid ways to respond to a biological attack from an unknown agent, quickly characterize it and develop a countermeasure.  “Rather than having a drug or a vaccine for every potential [threat],” Weber said, “we need a capability to respond quickly, to be able to characterize what is causing illness, and then to develop as quickly as possible a medical countermeasure to save lives.”

By Cheryl Pellerin, Global Nature of Terrorism Drives Biosurveillance, American Forces Press Service, DOD, Oct. 27, 2011