Tag Archives: cyberwarriors

Needles and Haystack and Beyond: DARPA

Using fine powder and a brush to reveal and copy fingerprints. image from wikipedia

From DARPA pdf document available at  FedBizOpps. Gov Enhanced Attribution
Solicitation Number: DARPA-BAA-16-34

Malicious actors in cyberspace currently operate with little fear of being caught due to the fact that it is extremely difficult, in some cases perhaps even impossible, to reliably and confidently attribute actions in cyberspace to individuals. The reason cyber attribution is difficult stems at least in part from a lack of end-to-end accountability in the current Internet infrastructure…..The identities of malicious cyber operators are largely obstructed by the use of multiple layers of indirection… The lack of detailed information about the actions and identities of the adversary cyber operators inhibits policymaker considerations and decisions for both cyber and non-cyber response options (e.g., economic sanctions under EO-13694).

The DARPA’s Enhanced Attribution program aims to make currently opaque malicious cyber adversary actions and individual cyber operator attribution transparent by providing high-fidelity visibility into all aspects of malicious cyber operator actions and to increase the Government’s ability to publicly reveal the actions of individual malicious cyber operators without damaging sources and methods….

The program seeks to develop:

–technologies to extract behavioral and physical biometrics from a range of devices and
vantage points to consistently identify virtual personas and individual malicious cyber
operators over time and across different endpoint devices and C2 infrastructures;
–techniques to decompose the software tools and actions of malicious cyber operators into
semantically rich and compressed knowledge representations;
–scalable techniques to fuse, manage, and project such ground-truth information over time,
toward developing a full historical and current picture of malicious activity;–algorithms for developing predictive behavioral profiles within the context of cyber campaigns; and
–technologies for validating and perhaps enriching this knowledge base with other sources
of data, including public and commercial sources of information.

Excerpts from Enhanced Attribution, Solicitation Number: DARPA-BAA-16-34, April 22, 2016

Advertisements

How to Tear Down a Power Grid

pylons. image from wikipedia

In Ukraine on Dec. 23, 2015 the power suddenly went out for thousands of people in the capital, Kiev, and western parts of the country. While technicians struggled for several hours to turn the lights back on, frustrated customers got nothing but busy signals at their utilities’ call centers….Hackers had taken down almost a quarter of the country’s power grid, claimed Ukrainian officials.  Specifically, the officials blamed Russians for tampering with the utilities’ software, then jamming the power companies’ phone lines to keep customers from alerting anyone….Several of the firms researching the attack say signs point to Russians as the culprits. The malware found in the Ukrainian grid’s computers, BlackEnergy3, is a known weapon of only one hacking group—dubbed Sandworm by researcher ISight Partners—whose attacks closely align with the interests of the Russian government. The group carried out attacks against the Ukrainian government and NATO in 2014…

The more automated U.S. and European power grids are much tougher targets. To cloak Manhattan in darkness, hackers would likely need to discover flaws in the systems the utilities themselves don’t know exist before they could exploit them. In the Ukrainian attack, leading security experts believe the hackers simply located the grid controls and delivered a command that shut the power off. Older systems may be more vulnerable to such attacks, as modern industrial control software is better at recognizing and rejecting unauthorized commands, says IOActive’s Larsen.

That said, a successful hack of more advanced U.S. or European systems would be a lot harder to fix. Ukrainian utility workers restored power by rushing to each disabled substation and resetting circuit breakers manually. Hackers capable of scrambling New York’s power plant software would probably have to bypass safety mechanisms to run a generator or transformer hotter than normal, physically damaging the equipment. That could keep a substation offline for days or weeks, says Michael Assante, former chief security officer for the nonprofit North American Electric Reliability.

Hackers may have targeted Ukraine’s grid for the same reason NATO jets bombed Serbian power plants in 1999: to show the citizenry that its government was too weak to keep the lights on. The hackers may even have seen the attack as in-kind retaliation after sabotage left 1.2 million people in Kremlin-controlled Crimea without lights in November 2015. In that case, saboteurs blew up pylons with explosives, then attacked the repair crews that came to fix them, creating a blackout that lasted for days. Researchers will continue to study the cyber attack in Ukraine, but the lesson may be that when it comes to war, a bomb still beats a keyboard.

Excerpts How Hackers Took Down a Power Grid, Bloomberg Business Week, Jan. 14, 2016

How to Forecast a Cyber Atttack: IARPA cyber intelligence

DDoS Stachledraht attack. Image from wikipedia

From the website of IARPA (Intelligence Advanced Research Projects Activity (IARPA) — a US research agency under the Director of National Intelligence.

“Approaches to cyber defense typically focus on post-mortem analysis of the various attack vectors utilized by adversaries. As attacks have evolved and increased over the years, established approaches (e.g., signature-based detection, anomaly detection) have not adequately enabled cybersecurity practitioners to get ahead of these threats. This has led to an industry that has invested heavily in analyzing the effects of cyber-attacks instead of analyzing and mitigating the “cause” of cyber-attacks,

The CAUSE   (Cyber-attack Automated Unconventional Sensor Environment)Program seeks to develop cyber-attack forecasting methods and detect emerging cyber phenomena to assist cyber defenders with the earliest detection of a cyber-attack (e.g., Distributed Denial of Service (DDoS), successful spearphishing, successful drive-by, remote exploitation, unauthorized access, reconnaissance). The CAUSE Program aims to develop and validate unconventional multi-disciplined sensor technology (e.g., actor behavior models, black market sales) that will forecast cyber-attacks and complement existing advanced intrusion detection capabilities. Anticipated innovations include: methods to manage and extract huge amounts of streaming and batch data, the application and introduction of new and existing features from other disciplines to the cyber domain, and the development of models to generate probabilistic warnings for future cyber events. Successful proposers will combine cutting-edge research with the ability to develop robust forecasting capabilities from multiple sensors not typically used in the cyber domain…”

Excerpt from IARPA website

See also http://www.iarpa.gov/images/files/programs/cause/CAUSE_Abstracts.pdf

CyberWeapons: the Regin Malware

Malware Statistics

An advanced piece of malware, newly uncovered, has been in use since as early as 2008 to spy on governments, companies and individuals, Symantec said in a report .  The Regin cyberespionage tool uses several stealth features to avoid detection, a characteristic that required a significant investment of time and resources and that suggests it’s the product of a nation-state, Symantec warned, without hazarding a guess about which country might be behind it. The malware’s design makes it highly suited for long-term mass surveillance, according to the maker of antivirus software…

The highly customizable nature of Regin, which Symantec labeled a “top-tier espionage tool,” allows for a wide range of remote access Trojan capabilities, including password and data theft, hijacking the mouse’s point-and-click functions, and capturing screenshots from infected computers. Other infections were identified monitoring network traffic and analyzing email from Exchange databases….

The malware’s targets are geographically diverse, Symantec said, observing more than half of the infections in Russia and Saudi Arabia. Among the other countries targeted are Ireland, Mexico and India. [ Regin have been identified also in Afghanistan, Algeria, Belgium, Brazil, Fiji, Germany,Indonesia, Iran, Kiribati, Malaysia, Pakistan, Syria]

Regin is composed of five attack stages that are hidden and encrypted, with the exception of the first stage, which begins a domino chain of decrypting and executing the next stage. Each individual stage contains little information about malware’s structure. All five stages had to be acquired to analyze the threat posed by the malware.  The multistage architecture of Regin, Symantec said, is reminiscent of Stuxnet, a sophisticated computer virus discovered attacking a nuclear enrichment facility in Iran in 2010, and Duqu, which has identical code to Stuxnet but which appeared designed for cyber espionage instead of sabotage.  Symantec said it believes that many components of Regin remain undiscovered and that additional functionality and versions may exist.  “Regin uses a modular approach,” Symantec said, “giving flexibility to the threat operators as they can load custom features tailored to individual targets when required.”

Excerpt from Steven Musil Stealthy Regin malware is a ‘top-tier espionage tool’, CNET, Nov. 23, 2014

See also White paper Karspersky Lab 

Cyberwarriors: US and China

cyberhacking

On May 19th, 2014 the Justice Department unveiled 31 charges against five members of China’s People’s Liberation Army (PLA), involving breaking six laws, from relatively minor counts of identity theft to economic espionage, which carries a maximum sentence of 15 years. This is the first time the government has charged employees of a foreign government with cybercrime. The accused are unlikely ever to stand trial. Even so, the Justice Department produced posters with mugshots of the men beneath the legend “wanted by the FBI”. They may never be punished, but that is not the point. Google any of their names and the mugshots now appear, the online equivalent of a perp walk.

That China’s government spies on the commercial activities of companies in America is not news in itself. Last year Mandiant, a cyber-security firm based in Virginia, released a report that identified Unit 61398 of the PLA as the source of cyber-attacks against 140 companies since 2006. But the indictment does reveal more details about what sorts of things the Chinese cybersnoops have been snaffling.

Hackers stole designs for pipes from Westinghouse, an American firm, when it was building four nuclear power stations in China, and also took e-mails from executives who were negotiating with a state-owned company. They took financial information from SolarWorld, a maker of solar panels; gained access to computers owned by US Steel while it was in a trade dispute with a state-owned company; and took files from Alcoa, an aluminium producer, while it was in a joint venture with another Chinese government-backed firm. ATI, another metal firm, and the United Steelworkers union were hacked, too.

American firms that do business in China have long lobbied behind closed doors for Uncle Sam to do something about Chinese hackers. America’s government has hitherto followed a similar logic, pressing China in private. The decision to make a fuss reflects the failure of that approach. When the existence of Unit 61398 became public its troops paused for a while, then continued as before.

Confronting the PLA’s hackers comes at a cost. China has pulled out of a bilateral working group on cyber-security in response to the indictments. Global Times, a Chinese English-language daily, denounced America as: “a mincing rascal”. But doing nothing has a cost, too. Companies like Westinghouse and US Steel have a hard enough time competing with Chinese firms, without having their business plans and designs pinched by thieves in uniform. Nor is the spying limited to manufacturers: tech companies have been targeted by the same group…

Second, America’s spying on Huawei, a Chinese maker of telecoms and networking equipment, makes China’s government doubt that America follows its own rules.

Chinese spying: Cybersnoops and mincing rascals,  Economist, May 24, at 28

Automated Cyber-Security Systems: DARPA

data

From the DARPA website:

DARPA’s Cyber Grand Challenge takes aim at an increasingly serious problem: the inadequacy of current network security systems, which require expert programmers to identify and repair system weaknesses—typically after attackers have taken advantage of those weaknesses to steal data or disrupt processes. Such disruptions pose greater risks than ever as more and more devices, including vehicles and homes, get networked in what has become known as “the Internet of things.

“Today’s security methods involve experts working with computerized systems to identify attacks, craft corrective patches and signatures and distribute those correctives to users everywhere—a process that can take months from the time an attack is first launched,” said Mike Walker, DARPA program manager. “The only effective approach to defending against today’s ever-increasing volume and diversity of attacks is to shift to fully automated systems capable of discovering and neutralizing attacks instantly.”

To help accelerate this transition, DARPA launched the Cyber Grand Challenge, the first computer security tournament designed to test the wits of machines, not experts. The Challenge plans to follow a “capture the flag” competition format that experts have used for more than 20 years to test their cyber defense skills. That approach requires that competitors reverse engineer software created by challenge organizers and locate and heal its hidden weaknesses in a live network competition. The longest-running annual capture-the-flag challenge for experts is held at an annual conference known as DEF CON, and under the terms of a new agreement the Cyber Grand Challenge final competition is scheduled to co-locate with the DEF CON Conference in Las Vegas in 2016…

At the event, computers that have made it through a series of qualifying events over the next two years would compete head-to-head in a final tournament. Custom data visualization technology is under development to make it easy for spectators—both a live audience at the conference and anyone watching the event’s video stream worldwide—to follow the action.   Details about the Cyber Grand Challenge and some of the other registered teams can be found at www.cybergrandchallenge.com.

Showing off American Military Hackers: DARPA Plan X

oculus

At the Pentagon Wednesday (May 21, 2014) the armed forces’ far-out research branch known as the Defense Advanced Research Projects Agency showed off its latest demos for Plan X, a long-gestating software platform designed to unify digital attack and defense tools into a single, easy-to-use interface for American military hackers. And for the last few months, that program has had a new toy: The agency is experimenting with using the Oculus Rift virtual-reality headset to give cyberwarriors a new way to visualize three-dimensional network simulations–in some cases with the goal of better targeting them for attack.

“You’re not in a two-dimensional view, so you can look around the data. You look to your left, look to your right, and see different subnets of information,” Darpa’s Plan X program manager Frank Pound told WIRED in an interview. “With the Oculus you have that immersive environment. It’s like you’re swimming in the internet…..If Plan X’s Oculus software ever reaches the eyeballs of actual soldiers–a development that Darpa says is still years away–Pound doesn’t deny that the interface would be used for actual offensive hacking as well as defense and reconnaissance. Like the rest of Plan X, he says it’s meant to be a simpler and more intuitive way for the U.S. Cyber Command and other American military hackers to visualize everything they do in their cyberwar operations. “Think of Plan X like an aircraft carrier,” says Pound. “It can carry any weapon system or capability.”

That sort of admission will no doubt set off alarm bells for critics of the American military’s increasingly aggressive posture on the Internet. The revelation in 2012 that the United States created the Iran-targeted Stuxnet malware and a year of Edward Snowden’s leaks have already demonstrated that the NSA engages in more advanced cyberattack operations than practically any country on the planet. Enabling American hackers to launch those attacks with a tool that’s literally designed for video games could be seen as encouraging a brazen attitude towards cyberwar, disconnecting it from the reality of its consequences.

But Darpa’s Pound counters that safeguards against reckless hacking will be built into Plan X, and that it may actually reduce collateral damage from military cyberattacks by allowing soldiers to better understand the networks they’re attacking.

Excerpt from ANDY GREENBERG, Darpa Turns Oculus Into a Weapon for Cyberwar, Wired, May 23, 2014

The Digital Bombs of DARPA: Plan X