Tag Archives: DARPA Biological Technologies Office

The Perfect Spies: Animals as Mobile Sensors of US Enemies

From the DARPA website:

The world’s vast oceans and seas offer seemingly endless spaces in which adversaries of the United States can maneuver undetected. The U.S. military deploys networks of manned and unmanned platforms and sensors to monitor adversary activity, but the scale of the task is daunting and hardware alone cannot meet every need in the dynamic marine environment. Sea life, however, offers a potential new advantage. Marine organisms are highly attuned to their surroundings—their survival depends on it—and a new program out of DARPA’s Biological Technologies Office aims to tap into [marine animals] natural sensing capabilities to detect and signal when activities of interest occur in strategic waters such as straits and littoral regions.

The Persistent Aquatic Living Sensors (PALS) program, led by program manager Lori Adornato, will study natural and modified organisms to determine which ones could best support sensor systems that detect the movement of manned and unmanned underwater vehicles. PALS will investigate marine organisms’ responses to the presence of such vehicles, and characterize the resulting signals or behaviors so they can be captured, interpreted, and relayed by a network of hardware devices.

Beyond sheer ubiquity, sensor systems built around living organisms would offer a number of advantages over hardware alone. Sea life adapts and responds to its environment, and it self-replicates and self-sustains. Evolution has given marine organisms the ability to sense stimuli across domains—tactile, electrical, acoustic, magnetic, chemical, and optical. Even extreme low light is not an obstacle to organisms that have evolved to hunt and evade in the dark.

However, evaluating the sensing capabilities of sea life is only one of the challenges for PALS researchers. Performer teams supporting DARPA will also have to develop hardware, software, and algorithms to translate organism behavior into actionable information and then communicate it to end users…. The complete sensing systems must also discriminate between target vehicles and other sources of stimuli, such as debris and other marine organisms, to limit the number of false positives.

Adornato is aiming to demonstrate the approach and its advantages in realistic environments to convey military utility. “Our ideal scenario for PALS is to leverage a wide range of native marine organisms, with no need to train, house, or modify them in any way, which would open up this type of sensing to many locations,” Adornato said.

Excerpt from PALS Turns to Marine Organisms to Help Monitor Strategic Waters: Highly adapted sea life could help U.S. military detect adversary activity over large areas, Feb. 2, 2018

Advertisements

60 Days to Save the World

A dendritic cell. image from wikipedia

The US military supports US Government responses to public health emergencies such as Ebola, which can cause regional destabilization and spread through global travel. Warfighters must also operate in regions where diseases like chikungunya and dengue are endemic, and even seemingly mild challenges like seasonal influenza affect force readiness. In addition to these naturally occurring threats, terrorists and other potential adversaries have a growing palette of biological tools to engineer new biological threats. Existing capabilities to respond to an outbreak and develop therapeutics often take years or even decades to achieve results. Recent examples of public health emergencies have demonstrated a national and global inability to develop effective preventive or therapeutic solutions in a relevant timescale when an infectious threat emerges. The threat of infectious agents on US and global national security can be mitigated if the DoD has the capability to rapidly deploy and impart near-immediate immunity to military personnel and civilian populations for known and newly emerging pathogens.

The goal of P3 is to achieve an integrated capability that can deliver pandemic prevention countermeasures to patients within 60 days of an outbreak. P3 aims to revolutionize outbreak response by enabling rapid discovery, characterization, production, and testing of efficacious medical countermeasures. P3 will innovate in the following areas: (1) Generation of virus stock (including viral unknowns); (2) Rapid evolution of antibody candidates; and (3) Gene-encoded antibody delivery methods.

Excerpts from  The Biological Technologies Office (BTO) of the Defense Advanced Research Projects Agency (DARPA) Proposers Day March 2, 2017 

The Manipulation of Insects: DARPA

Insect Allies program DARPA

DARPA’s Biological Technologies Office s working on new Insect Allies program. Insect Allies will seek to develop vector[insect]-mediated modification technologies for mature plants to rapidly counter environmental and biological threats to crops. Threats might include pathogens, pests, drought, and salinity, among others. DARPA believes that the high specificity of genetic modification coupled with quick plant gene uptake could allow crops to be protected from threats within a single growing season.The Proposers Day will be held on November 18, 2016

Excerpt from  DARPA Press Release Insect Allies Proposers Day, Nov. 2016

The 1 Trillion Cycles Per Second Circuit: DARPA

Terahertz waves lie at the far end of the infrared band, just before the start of the microwave band.  Image from wikipeda

Officials from Guinness World Records today recognized DARPA’s Terahertz Electronics program for creating the fastest solid-state amplifier integrated circuit ever measured. The ten-stage common-source amplifier operates at a speed of one terahertz (1012 GHz), or one trillion cycles per second—150 billion cycles faster than the existing world record of 850 gigahertz set in 2012.…Developed by Northrop Grumman Corporation, the Terahertz Monolithic Integrated Circuit (TMIC) exhibits power gains several orders of magnitude beyond the current state of the art…  For years, researchers have been looking to exploit the tremendously high-frequency band beginning above 300 gigahertz where the wavelengths are less than one millimeter. The terahertz level has proven to be somewhat elusive though due to a lack of effective means to generate, detect, process and radiate the necessary high-frequency signals.  Current electronics using solid-state technologies have largely been unable to access the sub-millimeter band of the electromagnetic spectrum due to insufficient transistor performance.,,,

According to  Dev Palmer, DARPA program manager. “This breakthrough could lead to revolutionary technologies such as high-resolution security imaging systems, improved collision-avoidance radar, communications networks with many times the capacity of current systems and spectrometers that could detect potentially dangerous chemicals and explosives with much greater sensitivity.”

DARPA has made a series of strategic investments in terahertz electronics through itsHiFIVE, SWIFT and TFAST programs. Each program built on the successes of the previous one, providing the foundational research necessary for frequencies to reach the terahertz threshold.

Excerpts from DARPA CIRCUIT ACHIEVES SPEEDS OF 1 TRILLION CYCLES PER SECOND, EARNS GUINNESS WORLD RECORD, DARPA website, http://www.darpa.mil, Oct. 28, 2014

This technology can be used for Security and Communications (including military communications): Here from Wikipedia

Security:
Terahertz radiation can penetrate fabrics and plastics, so it can be used in surveillance, such as security screening, to uncover concealed weapons on a person, remotely. This is of particular interest because many materials of interest have unique spectral “fingerprints” in the terahertz range…. In January 2013, the NYPD announced plans to experiment with the newfound technology to detect concealed weapons, prompting Miami blogger and privacy activist Jonathan Corbett to file a lawsuit against the department in Manhattan federal court that same month, challenging such use: “For thousands of years, humans have used clothing to protect their modesty and have quite reasonably held the expectation of privacy for anything inside of their clothing, since no human is able to see through them.” He seeks a court order to prohibit using the technology without reasonable suspicion or probable cause.

Communication:Potential uses exist in high-altitude telecommunications eg aircraft to satellite, [e.g. the Phantom SWIFT] or satellite to satellite.

 

Synthetic Biology and DARPA

silica

Twist Bioscience announced that it raised $26 million in a Series B financing to commercialize the company’s semiconductor-based synthetic gene manufacturing process. Nick and Joby Pritzker, through their family’s firm Tao Invest, led the round, with participation from ARCH Venture Partners, Paladin Capital Group, Yuri Milner and additional strategic corporate and venture investors. All existing investors participated in the round.

The company also received a $5.1 million contract from the Defense Advanced Research Projects Agency (DARPA) to fund development of Twist’s technology platform for the large-scale, high-throughput construction of genetic designs. DARPA granted the contract under the Living Foundries: 1000 Molecules Program, which seeks to build a scalable, integrated, rapid design and prototyping infrastructure for the facile engineering of biology…

Said Emily Leproust, Ph.D., chief executive officer of Twist Bioscience. “Today, we have all the necessary components in place to automate and scale our synthetic gene manufacturing process and staff strategically, with the goal of bringing our first products and services to the market in 2015.”

According to to Twist Bioscience “At Twist Bioscience, our expertise is synthetic DNA. We have developed a proprietary semiconductor-based synthetic DNA manufacturing process featuring a 10,000-well silicon platform capable of producing synthetic biology tools, such as oligonucleotides, genes, pathways, chassis and genomes. By synthesizing DNA on silicon instead of on traditional 96-well plastic plates, our platform overcomes the current inefficiencies of synthetic DNA production, and enables cost-effective, rapid, high-quality and high throughput synthetic gene production. The Twist Bioscience platform has the potential to greatly accelerate the development of personalized medicine, sustainable chemical production, improved agriculture production as well as new applications such as in vivo diagnostics, biodetection and data storage. 

Twist Bioscience Secures $31.1 Million,  PRESS RELEASE, May 27, 2014

See also DARPA and Industrial Revolution in Genetic Engineering

See also DARPA Biological Technologies Office

The Biological Technologies Office of DARPA

Image from wikipedia

From the DARPA website

The mission of the Biological Technologies Office (BTO) is to foster, demonstrate, and transition breakthrough fundamental research, discoveries, and applications that integrate biology, engineering, and computer science for national security. BTO seeks to establish and invest in new communities of scientific interest at the intersection of traditional and emerging disciplines. Its investment portfolio goes far beyond life sciences applications in medicine to include areas of research such as human-machine interfaces, microbes as production platforms, and deep exploration of the impact of evolving ecologies and environments on U.S. readiness and capabilities. BTO’s programs operate across a wide range of scales, from individual cells to complex biological systems including mammalian and non-mammalian organisms and the macro- and micro-environments in which they operate.

BTO Focus Areas

Restore and Maintain Warfighter Abilities Military readiness depends on the health and wellbeing of military service members. A critical part of BTO’s mission is to cultivate new discoveries that help maintain peak warfighter abilities and restore those abilities as quickly and fully as possible when they are degraded or lost. This focus area is grounded in the development of new techniques and therapeutic strategies for addressing current and emerging threats, but extends beyond medical applications to include exploration of complex biological issues that can impact an individual’s ability to operate and interact in the biological and physical world. The research portfolio includes neuroscience to drive a deeper understanding of the human brain, how it interfaces with the body and the external world, and how it directs and coordinates behavior, including decision-making in demanding environs. BTO will extend work involving human participants and apply insights from physiology, biochemistry, psychology, sociology, and related sciences to such emerging-science domains as bioengineering, bioinformatics, and microbiomics.

Harness Biological Systems The highly evolved functional and synthetic capabilities of biological systems can be harnessed to develop new products and systems in support of national security with advantages over what even the most advanced conventional chemistry and manufacturing technologies can achieve. This space and its opportunities are just becoming tangible due to the rapid, simultaneous development of genome-scale engineering tools, enormous genomic datasets, new analytical capabilities, and the convergence of several engineering and scientific disciplines with biology. BTO seeks to establish a fundamental understanding of natural processes and the underlying design rules that govern the behavior of biological systems, and apply that knowledge to forward-engineer new systems and products with novel functionality. To support this work, BTO develops techniques at the intersection of automation, computer science, and biology to explore biological data at massive scales.

Apply Biological Complexity at Scale Biological systems operate over an enormous range of spatial, physical, and temporal scales. Some organisms thrive as individual cells, while many others, including humans, are colonized by communities of foreign cells that greatly outnumber their own and have potentially significant but still largely mysterious impacts on metabolism, psychological state, performance, and health. Disease vectors migrate around the globe slowly and stealthily at times, and at other times in devastating waves of breathtaking speed—poorly understood dynamics that can threaten national security. And because they are so difficult to parse from larger biological and ecological phenomena, population-level effects of relevance to agriculture and food security remain largely unplumbed. BTO is looking into pursuing new insights derived from biological complexity and living-system dynamics with the goal of developing applications to enhance global-scale stability and human wellbeing.

See also http://www.darpa.mil/Our_Work/BTO/Programs/

See also DARPA Pushes for Industrial Revolution in Genetic Engineering