Tag Archives: DARPA Biological Technology Office

On-Demand Germs: Bio-engineering for defense or offense

Parallel telomere quadruple

From the DARPA website

The development of increasingly sophisticated techniques and tools to sequence, synthesize and manipulate genetic material has led to the rapidly maturing discipline of synthetic biology. …[But] The costs of maintaining required environmental controls and detecting and compensating for genetic alterations are substantial and severely limit the widespread application of synthetic biology to U.S. national security missions.

To help address these challenges, DARPA has created the Biological Robustness in Complex Settings (BRICS)  BRICS seeks to develop the fundamental understanding and component technologies needed to increase the biological robustness and stability of engineered organisms while maintaining or enhancing the safe application of those organisms in complex biological environments. The goal is to create the technical foundation for future engineered biological systems to achieve greater biomedical, industrial and strategic potential.

“By making these systems more robust, stable and safe, BRICS seeks to harness the full range of capabilities at the intersection of engineering and biology,” said Justin Gallivan, DARPA program manager. “These capabilities could include efficient on-demand bio-production of novel drugs, fuels, sensors and coatings; or engineered microbes able to optimize human health by treating or preventing disease.”

Excerpt from BUILDING THE FOUNDATION FOR FUTURE SYNTHETIC BIOLOGY APPLICATIONS WITH BRICS
July 29, 2014

Predator Bacteria: the DARPA program

melioidosis

The  Pathogen Predators Program of DARPA would represent a significant departure from conventional antibacterial therapies that rely on small molecule antibiotics. While antibiotics have been remarkably effective in the past, their widespread use has led to the emergence of antibiotic-resistant bacterial infections that are difficult or impossible to treat. In vitro studies have shown that predators such as Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus can prey upon more than one hundred different human pathogens and will also prey on multi-drug resistant bacteria.

The Pathogen Predators program will answer three fundamental questions about bacterial predators:

1) Are predators toxic to recipient (host) organisms?
2) Against what pathogens (prey) are predators effective?
3) Can pathogens develop resistance to predation?

This list [of bacteria that could be killed by predator bacteria] includes NIAID (National Institute of Allergy and Infectious Diseases) Category A and B threats to national security:

NIAID Category A and B
Yersinia pestis (i.e. plague)
Francisella tularensis (i.e. tularemia)
Brucella species
Coxiella burnetii (i.e. Q fever)
Rickettsia prowazekii (i.e.  typhus)
Burkholderia mallei (i.e. glanders)
Burkholderia pseudomallei (i.e. melioidosis)

Source DARRA (pdf)

Synthetic Biology and DARPA

silica

Twist Bioscience announced that it raised $26 million in a Series B financing to commercialize the company’s semiconductor-based synthetic gene manufacturing process. Nick and Joby Pritzker, through their family’s firm Tao Invest, led the round, with participation from ARCH Venture Partners, Paladin Capital Group, Yuri Milner and additional strategic corporate and venture investors. All existing investors participated in the round.

The company also received a $5.1 million contract from the Defense Advanced Research Projects Agency (DARPA) to fund development of Twist’s technology platform for the large-scale, high-throughput construction of genetic designs. DARPA granted the contract under the Living Foundries: 1000 Molecules Program, which seeks to build a scalable, integrated, rapid design and prototyping infrastructure for the facile engineering of biology…

Said Emily Leproust, Ph.D., chief executive officer of Twist Bioscience. “Today, we have all the necessary components in place to automate and scale our synthetic gene manufacturing process and staff strategically, with the goal of bringing our first products and services to the market in 2015.”

According to to Twist Bioscience “At Twist Bioscience, our expertise is synthetic DNA. We have developed a proprietary semiconductor-based synthetic DNA manufacturing process featuring a 10,000-well silicon platform capable of producing synthetic biology tools, such as oligonucleotides, genes, pathways, chassis and genomes. By synthesizing DNA on silicon instead of on traditional 96-well plastic plates, our platform overcomes the current inefficiencies of synthetic DNA production, and enables cost-effective, rapid, high-quality and high throughput synthetic gene production. The Twist Bioscience platform has the potential to greatly accelerate the development of personalized medicine, sustainable chemical production, improved agriculture production as well as new applications such as in vivo diagnostics, biodetection and data storage. 

Twist Bioscience Secures $31.1 Million,  PRESS RELEASE, May 27, 2014

See also DARPA and Industrial Revolution in Genetic Engineering

See also DARPA Biological Technologies Office