Tag Archives: decommissioning Fukushima

Robots to the Rescue: Fukushima Japan

jorange on equipment probably melted nuclear fuel

A robot operating deep inside a failed reactor at the stricken Fukushima nuclear plant north of Tokyo has revealed what appears to be stalactites of melted nuclear fuel, the plant’s operator has said.
The discovery is considered a key development in the decommissioning process of the plant, which suffered a catastrophic meltdown in 2011 after a huge tsunami swamped the facility.
Operating remotely within submerged parts of the Fukushima Daiichi plant’s Unit 3 reactor, the robot sent back 16 hours worth of images of massive, lava-like fuel deposits on the floor of the pedestal, a part of the reactor that sits underneath and supports the core….

The discovery is key to determining how to further advance the cleanup of the plant, a process that is expected to take decades.  “This was the first time that we could confirm the status inside the pedestal,” TEPCO spokesperson Maki Murayama said. “This is a big step towards the decommission process.”..

Having entered the stricken Pressure Containment Vessel (PCV) through a pipe designed to prevent the escape of radioactive gas, the robot descended into the cooling water which accumulated following the accident.
The device was equipped with thrusters to navigate through the water, and featured front and rear cameras.  The small “radiation-hardened, screw-driven” submersible robot was designed to fit through the narrow, 14-centimeter (5.5-inch) diameter entrance of the pipe, according to the Tokyo-based International Research Institute for Nuclear Decommissioning (IRID), which developed the device alongside technology company Toshiba.

As the robot navigates through the ruined reactor, melted equipment and the fuel deposits can be seen.

The mission was launched after previous photographic inspection of the Unit 3 reactor suggested that, “during the accident, fuel assemblies melted from the excess heat, dropping from their original position down to the pedestal area,” according to a statement released by TEPCO.

Excerpt from Euan McKirdy and Yoko Wakatsuki, Fukushima robot reveals first sign of melted fuel in submerged reactor, CNN, July 24, 2017

Throwing Money at Nuclear Waste

Japan seeks final resting place for highly radioactive nuclear waste
…[W]ith a number of Japan’s nuclear reactors closed down for good in the wake of the Fukushima accident, the need for a permanent storage site is more pressing than ever.

The disaster, in which a 13-meter tsunami triggered by an off-shore earthquake crippled four reactors at the plant and caused massive amounts of radioactivity to escape into the atmosphere, also underlined just how seismically unstable the Japanese archipelago is and the need for the repository to be completely safe for 100,000 years.

“They have been trying to get this plan of the ground for years and one thing they tried was to offer money to any town or village that agreed to even undergo a survey to see if their location was suitable,” she said.  “There were a number of mayors who accepted the proposal because they wanted the money – even though they had no intention of ever agreeing to host the storage site – but the backlash from their constituents was fast and it was furious,” Smith added.  “In every case, those mayors reversed their decisions and the government has got nowhere,” she said. “But I fear that means that sooner or later they are just going to make a decision on a site and order the community to accept it.”

The security requirements of the facility will be exacting, the government has stated, and the site will need to be at least 300 meters beneath the surface in a part of the country that is not subject to seismic activity from active faults or volcanoes. It must also be safe from the effects of erosion and away from oil and coal fields. Another consideration is access and sites within 20 km of the coast are preferred.

The facility will need to be able to hold 25,000 canisters of vitrified high-level waste, while more waste will be produced as the nation’s nuclear reactors are slowly brought back online after being mothballed since 2011 for extensive assessments of their safety and ability to withstand a natural disaster on the same scale as the magnitude-9 earthquake that struck Fukushima.

When it is released, the government’s list is likely to include places in Tohoku and Hokkaido as among the most suitable sites, because both are relatively less populated than central areas of the country and are in need of revitalization efforts. Parts of Tohoku close to the Fukushima plant may eventually be chosen because they are still heavily contaminated with radiation from the accident.

Excerpts from Japan seeks final resting place for highly radioactive nuclear waste, Deutsche Welle, May 4, 2017

Not for the Fainthearted: total nuclear waste at Fukushima

Rubble Japan earthquake. image from wikipedia

Each form of waste at the Fukushima Daiichi Nuclear Power Station, where three reactors melted down after an earthquake and a tsunami on March 11, 2011, presents its own challenges.

400 Tons of Contaminated Water Per Day
The Tokyo Electric Power Company is pumping water nonstop through the three reactors to cool melted fuel that remains too hot and radioactive to remove. About 400 tons of water pass through the reactors every day, including groundwater that seeps in. The water picks up radiation in the reactors and then is diverted into a decontamination facility.  But the decontamination filters cannot remove all the radioactive material. So for now, all this water is being stored in 1,000 gray, blue and white tanks on the grounds. The tanks already hold 962,000 tons of contaminated water, and Tokyo Electric is installing more tanks. It is also trying to slow the flow of groundwater through the reactors by building an underground ice wall.

Within a few years, though, and no one is sure exactly when, the plant may run out of room to store the contaminated water. “We cannot continue to build tanks forever,” said Shigenori Hata, an official at the Ministry of Economy, Trade and Industry.  The authorities are debating whether it might be acceptable, given the relatively low radioactive levels in the water, to dilute the contaminated water and then dump it into the ocean. But local fishermen are vehemently opposed. Many people still do not trust Tokyo Electric because of its bungled response to the disaster, the worst nuclear accident since Chernobyl.

3,519 Containers of Radioactive Sludge
The process of decontaminating the water leaves radioactive sludge trapped in filters, which are being held in thousands of containers of different sizes.Tokyo Electric says it cannot quantify the amount of radioactive sludge being generated. But it says it is experimenting with what to do with it, including mixing it with cement or iron. Then it will have to decide how to store it.

64,700 Cubic Meters of Discarded Protective Clothing
The estimated 6,000 cleanup workers at the site put on new protective gear every day. These hazmat suits, face masks, rubber gloves and shoe coverings are thrown out at the end of each shift. The clothing is compressed and stored in 1,000 steel boxes stacked around the site.To date, more than 64,700 cubic meters of gear has been discarded, the equivalent of 17 million one-gallon containers. Tokyo Electric says it will eventually incinerate all this contaminated clothing to reduce the space needed to store it.

Branches and Logs From 220 Acres of Deforested Land
The plant’s grounds were once dotted with trees, and a portion was even designated as a bird sanctuary. But workers have cleared about 220 acres of trees since the meltdown spewed radiation over them.Now, piles of branches and tree trunks are stacked all over the site. Officials say there are about 80,000 cubic meters of this waste, and all of it will have to be incinerated and stored someday.

200,400 Cubic Meters of Radioactive Rubble
Explosions during the meltdown filled the reactors with rubble. Workers and robots are slowly and carefully trying to remove this tangled mass of crushed concrete, pipes, hoses and metal.  Tokyo Electric estimates that more than 200,400 cubic meters of rubble — all of it radioactive — have been removed so far and stored in custom-made steel boxes. That is the equivalent of about 3,000 standard 40-foot shipping containers.

3.5 Billion Gallons of Soil

Thousands of plastic garbage bags sit in neat rows in the fields and abandoned towns surrounding the Fukushima plant. They contain soil that was scraped from land that was exposed to radiation in the days after the accident.  Japan’s Ministry of the Environment estimates that it has bagged 3.5 billion gallons of soil, and plans to collect much more. It will eventually incinerate some of the soil, but that will only reduce the volume of the radioactive waste, not eliminate it.  The ministry has already begun building a massive, interim storage facility in Fukushima prefecture and negotiating with 2,360 landowners for the thousands of acres needed to complete it. And that is not even a long-term solution: The government says that after 30 years it will need another site — or sites — to store radioactive waste.

1,573 Nuclear Fuel Rods
The ultimate goal of the cleanup is to cool and, if possible, remove the uranium and plutonium fuel that was inside the three reactors at the time of the disaster.  Hundreds of spent fuel rods are in cooling pools inside the reactors, and the company hopes to have cleared away enough rubble to begin removing them next year. The much bigger challenge will be removing the fuel that was in use in the reactor core at the time of the meltdown.

The condition and location of this molten fuel debris are still largely unknown. In one reactor where a robot was sent in January, much of the melted fuel is believed to have burned through the bottom of the inner reactor vessel and burrowed into the thick concrete foundation of the containment structure.  The plan is to completely seal the containment vessels, fill them with water and use robots to find and remove the molten fuel debris. But the rubble, the lethal levels of radiation and the risk of letting radiation escape make this an exceedingly difficult task.

In January 2017, the robot sent into one of the reactors discovered radiation levels high enough to kill a person in less than a minute. Another had to be abandoned last month after debris blocked its path and radiation disabled it.

Tokyo Electric hopes to begin removing fuel debris from the reactor cores in 2021. The entire effort could take decades. Some say the radioactive material may prove impossible to remove safely and have suggested leaving it and entombing Fukushima under a concrete and steel sarcophagus like the one used at Chernobyl.

But the Japanese government and Tokyo Electric say they are committed to removing all the waste and cleaning the site, estimated at a cost of $188.6 billion.

Excerpts from MOTOKO RICH, Struggling With Japan’s Nuclear Waste, Six Years After Disaster, Mar. 11, 2017

When the End is not Near: Fukushima 2017

 black lumps on wire-mesh grating found at Fukushima, Jan 30, 2017

Hopes have been raised for a breakthrough in the decommissioning of the wrecked Fukushima Daiichi nuclear plant after its operator said it may have discovered melted fuel beneath a reactor, almost six years after the plant suffered a triple meltdown.  Tokyo Electric Power (Tepco) said on January 30, 2017 that a remote camera appeared to have found the debris beneath the badly damaged No 2 reactor, where radiation levels remain dangerously high. Locating the fuel is the first step towards removing it.  If Tepco can confirm that the black mass comprises melted fuel, it would represent a significant breakthrough in a recovery effort that has been hit by mishaps, the buildup of huge quantities of contaminated water, and soaring costs….Using a remotely controlled camera attached to the end of a 10.5-metre-long telescopic arm, Tepco technicians located black lumps on wire-mesh grating just below the reactor’s pressure vessel, local media reported.

The company plans to send a scorpion-like robot equipped with cameras, radiation measuring equipment and a temperature gauge into the No 2 reactor containment vessel….Three previous attempts to use robots to locate melted fuel inside the same reactor ended in failure when the devices were rendered useless by radiation.

The delicate, potentially dangerous task of decommissioning the plant has barely begun, however.Japanese media said that plans to remove spent fuel from the No 3 reactor building had been delayed, while decommissioning the entire plant was expected to take at least 40 years.  In December 2016, the government said the estimated cost of decommissioning the plant and decontaminating the surrounding area, as well as paying compensation and storing radioactive waste, had risen to 21.5 trillion yen ($187bn), nearly double an estimate released in 2013.

Excerpts Possible nuclear fuel find raises hopes of Fukushima plant breakthrough, Guardian, Jan. 30, 2017