Tag Archives: digital battlefield

Churning Out Weapons as quickly as Algorithms-dominance in electronic warfare

F-117 stealth plane.Image from wikipedia

US Army Secretary Eric Fanning announced [in August 2016] a new Rapid Capabilities Office to accelerate the development of cyber, electronic warfare…That rapid technological progression is on full display, for example, in eastern Ukraine, where Ukrainian soldiers have been battling Russian-backed forces since 2014. For example, Russian-backed separatists have used EW and GPS-spoofing to jam and misdirect the drones that Ukrainian troops use to scope out enemy positions. “Over the past several years we’ve learned from what we’ve seen from Russia and Ukraine, and later in Syria, and from the different capabilities they’ve brought to the battlefield. We’ve seen the combination of unmanned aerial systems and offensive cyber and advanced electronic warfare capabilities and how they provided Russian forces a new degree of sophistication,” said Fanning…

“My guess is … that after 15 years of doing largely counter-insurgency operations in the Middle East, the Army is now taking a look at how it would do large force-on-force conflict in a place like Europe. ”

The pace of innovation in EW — in the form of novel new waveforms that can disrupt an adversary’s electronics, paint enemy stealth aircraft* etc. — has surprised many in the military. That’s because EW innovation has become less and less a hardware challenge and more of a software challenge. You can make a new weapon as quickly as your algorithm can pull together a new waveform from the spectrum. But the military, too often, still procures EW assets the same way it buys jets and boats. Slowly.

Excerpts from To Counter Russia’s Cyber Prowess, US Army Launches Rapid-Tech Office, DefenseOne, Aug. 31, 2016

*Radar-absorbent material (RAM), often paints used on aircraft,: absorb radiated energy from a ground or air based radar station into the coating and convert it to heat rather than reflect it back thus avoiding detection by the radar.

Technology Firms Invade Defense Industry

Satellite Collision

[N]imbler Silicon Valley outfits are beginning to invade the defence industry’s territory. “Warfare is going digital,” observes Tom Captain of Deloitte, a consulting firm. Tech firms have shown that they can supply robots, drones and intelligence software. SpaceX, founded by Elon Musk, a tech entrepreneur, is taking America’s air force to court to reopen bidding for a satellite-launch contract awarded to Boeing and Lockheed.

Excerpt, Weapons-makers: The case for defence, Economist, July 19, 2014, at 55

Who is Preparing the Digital Bombs of DARPA: Plan X

The U.S. Defense Advanced Research Projects Agency DARPA has chosen six companies so far to define ways of understanding, planning, and managing military cyber warfare operations in real-time, large-scale, and dynamic networks.  DARPA has awarded six contracts collectively worth nearly $74 million for the Foundational Cyberwarfare (Plan X) project to conduct research into the nature of cyber warfare, and to develop strategies to seize and maintain U.S. cyber security and cyber attack dominance.

The contracts awarded are to Data Tactics, Intific, Raytheon SI Government Solutions,  Aptima, Apogee Research,  and the Northrop Grumman…

Today’s understanding of the cyber domain poses integration challenges with existing military capabilities, and connects computers using traceroute, packet analysis, and other techniques. In fact, current research is just beginning to answer questions about the cyber domain, DARPA officials say.

The Plan X program contractors will define a cyber battlespace as three main concepts: network map, operational units, and capability set.  The network map is a collection of nodes and edges, and shows how computers are connected; the network map is where military planners and operators interact. Operational units are platforms such as ships, aircraft, and armored combat vehicles that are part of the network topology. There are two primary types of operational units: entry nodes and support platforms.  An entry node gives direct physical access into a network, while support platforms control different aspects of an operation — similarly to how military fighters, bombers, and unmanned aircraft control different aspects of air campaigns.

The capability set involves technologies the military uses to control the cyber battlespace, and are divided into three categories: access, functional, and communication.  Access enables a user to run programs or payloads. Functional involves other types of technology that affect computers and networks, such as network scanners, denial-of-service, defense evasion, network and host reconnaissance, and operating system control. Communication helps entry nodes, support platforms, and system capabilities to exchange information.

The Plan X program seeks to integrate the cyber battlespace concepts of the network map, operational unit, and capability set in military cyber operations, and will be developed as an open platform architecture for integration with government and industry technologies.

The Plan X program is structured around an on-site collaborative research space (CRS) in Arlington, Va., where the program contractors will be organized as a virtual technology startup. Several contract awards are expected, and the program will run in four one-year phases.

Excerpt, John Keller, DARPA picks six companies to define enabling technologies for U.S. cyber warfare strategy, Military and Aerospace,  July 11, 2013

See also Digital Bombs: DARPA and the Digital Battlefield

Digital Bombs: DARPA and the Digital Battlefield

The Pentagon is turning to the private sector, universities and even computer-game companies as part of an ambitious effort to develop technologies to improve its cyberwarfare capabilities, launch effective attacks and withstand the likely retaliation.  The previously unreported effort, which its authors have dubbed Plan X, marks a new phase in the nation’s fledgling military operations in cyberspace, which have focused more on protecting the Defense Department’s computer systems than on disrupting or destroying those of enemies.  Plan X is a project of the Defense Advanced Research Projects Agency, a Pentagon division that focuses on experimental efforts and has a key role in harnessing computing power to help the military wage war more effectively.  “If they can do it, it’s a really big deal,” said Herbert S. Lin, a cybersecurity expert with the National Research Council of the National Academies. “If they achieve it, they’re talking about being able to dominate the digital battlefield just like they do the traditional battlefield.”

Cyberwarfare conjures images of smoking servers, downed electrical systems and exploding industrial plants, but military officials say cyberweapons are unlikely to be used on their own. Instead, they would support conventional attacks, by blinding an enemy to an impending airstrike, for example, or disabling a foe’s communications system during battle.  The five-year, $110 million research program will begin seeking proposals this summer. Among the goals will be the creation of an advanced map that details the entirety of cyberspace — a global domain that includestens of billions of computers and other devices — and updates itself continuously. Such a map would help commanders identify targets and disable them using computer code delivered through the Internet or other means.

nother goal is the creation of a robust operating system capable of launching attacks and surviving counterattacks. Officials say this would be the cyberspace equivalent of an armored tank; they compare existing computer operating systems to sport-utility vehicles — well suited to peaceful highways but too vulnerable to work on battlefields.   The architects of Plan X also hope to develop systems that could give commanders the ability to carry out speed-of-light attacks and counterattacks using preplanned scenarios that do not involve human operators manually typing in code — a process considered much too slow.  Officials compare this to flying an airplane on autopilot along predetermined routes.  It makes sense “to take this on right now,” said Richard M. George, a former National Security Agency cyberdefense official. “Other countries are preparing for a cyberwar. If we’re not pushing the envelope in cyber, somebody else will.”

The shift in focus is significant, said officials from the Pentagon agency, known by the acronym DARPA. Cyber-operations are rooted in the shadowy world of intelligence-gathering and electronic-spying organizations such as the NSA.  Unlike espionage, military cyber­attacks would be aimed at achieving a physical effect — disrupting or shutting down a computer, for example — and probably would be carried out by the U.S. Cyber Command, the organization that was launched in 2010 next to the NSA at Fort Meade.  “Because the origins of cyberattack have been in the intelligence community, there’s a tendency to believe that simply doing more of what they’re doing will get us what we need,” said Kaigham J. Gabriel, acting director of DARPA. “That’s not the way we see it. There’s a different speed, scale and range of capabilities that you need. No matter how much red you buy, it’s not orange.”

Plan X is part of a larger DARPA effort begun several years ago to create breakthrough offensive and defensive cyber-­capabilities.  With a cyber budget of $1.54 billion from 2013 to 2017, the agency will focus increasingly on cyber-offense to meet military needs, officials say. DARPA’s research is designed to foster long-shot successes. In addition to helping create the Internet, the agency’s work gave rise to stealth jet technology and portable global-positioning devices.   “Even if 90 percent of their ideas don’t pan out,” said Martin Libicki, a cyberwar expert at Rand Corp., “the 10 percent that are worthwhile more than pay back the difference.”

A digital battlefield map, as DARPA envisions it, would plot nodes on the Internet, drawing from a variety of sources and changing as cyberspace changes.  “In a split microsecond you could have a completely different flow of information and set of nodes,” Gabriel said. “The challenge and the opportunity is to create a capability where you’re always getting a rapid, high-order look of what the Internet looks like — of what the cyberspace looks like at any one point in time.”  The ideal map would show network connections, analyze how much capacity a particular route has for carrying a cyberweapon and suggest alternative routes according to traffic flows, among other things.

The goal would be a visual representation of cyberspace that could help commanders make decisions on what to attack and how, while seeing any attacks coming from an enemy.  Achieving this will require an enormous amount of upfront intelligence work, experts say.  Michael V. Hayden, a former NSA director and a former CIA director, said he can imagine a map with red dots representing enemy computers and blue dots representing American ones.  When the enemy upgrades his operating system, the red dots would blink yellow, meaning the target is out of reach until cyber operators can determine what the new operating system is…

Plan X also envisions the development of technology that enables a commander to plan, launch and control cyberattacks.  A commander wanting to hit a computer that controls a target — a strategically important drawbridge in enemy territory, for example — should be able to predict and quantify battle damage while considering the timing or other constraints on a possible attack, said Dan Roelker, Plan X program manager.

Cyberwar experts worry about unintended consequences of attacks that might damage the flow of electricity to civilian homes or hospitals. A targeting system also should allow operators to stop a strike or reroute it before it damages systems that are not targeted — a fail-safe mechanism that experts say would be very difficult to engineer.  DARPA will not prescribe what should be represented on the digital map.  Some experts say they would expect to see power and transportation systems that support military objectives.

Daniel Kuehl, an information warfare professor at the National Defense University’s iCollege, said the Air Force built its history around attacks on infrastructure — in Korea, Vietnam, Serbia and Iraq.  “In all of those conflicts,” he said, “we went after the other side’s electricity with bombs.”  Today, he said, cyberweapons could be more humane than pulverizing power grids with bombs.

If a cyberwarrior can disrupt a computer system controlling an enemy’s electric power, the system theoretically can also be turned back on, minimizing the impact on civilians.  But retired Gen. James E. Cartwright, who as vice chairman of the Joint Chiefs of Staff until August pushed to develop military cyber-offense capabilities, said the military is focused less on power grids than on “tanks and planes and ships and anything that carries a weapon.”  “The goal is not the single beautiful target that ends the war in one shot. That doesn’t exist,” said Cartwright, who is now with the Center for Strategic and International Studies. “The military needs more of a brute-force approach that allows it to get at a thousand targets as quickly as possible.

Ellen Nakashima, With Plan X, Pentagon seeks to spread U.S. military might to cyberspace, Washington Post, May 30, 2012