Tag Archives: drones helicopters

Killer Robotic Insects

Chased by robotic bees: Film Still from 'Hated in the Nation' Black Mirror Series

On November 12, 2017,  a video called “Slaughterbots” was uploaded to YouTube. … It is set in a near-future in which small drones fitted with face-recognition systems and shaped explosive charges can be programmed to seek out and kill known individuals or classes of individuals (those wearing a particular uniform, for example). In one scene, the drones are shown collaborating with each other to gain entrance to a building. One acts as a petard, blasting through a wall to grant access to the others…

[M]ilitary laboratories around the planet are busy developing small, autonomous robots for use in warfare, both conventional and unconventional. In America, in particular, a programme called MAST (Micro Autonomous Systems and Technology), which has been run by the US Army Research Laboratory in Maryland, is wrapping up this month after ten successful years….. Its successor, the Distributed and Collaborative Intelligent Systems and Technology (DCIST) programme, which began earlier this year, is now getting into its stride….Along with flying drones, MAST’s researchers have been developing pocket-sized battlefield scouts that can hop or crawl ahead of soldiers. DCIST’s purpose is to take these autonomous robots and make them co-operate. The result, if the project succeeds, will be swarms of devices that can take co-ordinated action to achieve a joint goal.

If swarms of small robots can be made to collaborate autonomously, someone, somewhere will do it…[Many of these small robots are today] cyclocopters …of less than 30 grams. Such machines can outperform polycopters...Cyclocopter aerodynamics is more like that of insects than of conventional aircraft…Cyclocopters get better as they get smaller. They are also quieter…[Another innovation involves] robots…that hop.One of the most advanced is Salto, developed by the Biomimetic Millisystems Laboratory at the University of California, Berkeley. Salto… has the agility to bounce over uneven surfaces and also to climb staircases…

Bouncing over the rubble of a collapsed building is not the only way to explore it. Another is to weave through the spaces between the debris. Researchers at the Biomimetic Millisystems lab are working on that, too. Their solution resembles a cockroach.

Getting into a building, whether collapsed or intact, is one thing. Navigating around it without human assistance is quite another. For this purpose MAST has been feeding its results to the Defence Advanced Research Projects Agency (DARPA)… The next challenge…is getting the robots to swarm and co-ordinate their behavior effectively.

Excerpt from Miniature Robots: Bot Flies, Economist, Dec. 16, 2017

Terns, Ships with their Own Drones

TERN Darpa. Drones for Small Ships. Image from DARPA

Small-deck ships such as destroyers and frigates could greatly increase their effectiveness if they had their own unmanned air systems (UASs) to provide intelligence, surveillance and reconnaissance (ISR) and other capabilities at long range around the clock. Current state-of-the-art UASs, however, lack the ability to take off and land from confined spaces in rough seas and achieve efficient long-duration flight. TERN (Tactically Exploited Reconnaissance Node) , a joint program between DARPA and the U.S. Navy’s Office of Naval Research (ONR), seeks to provide these and other previously unattainable capabilities. As part of Tern’s ongoing progress toward that goal, DARPA has awarded Phase 3 of Tern to a team led by the Northrop Grumman Corporation….  The Tern Phase 3 design envisions a tail-sitting, flying-wing aircraft with twin counter-rotating, nose-mounted propellers. The propellers would lift the aircraft from a ship deck, orient it for horizontal flight and provide propulsion to complete a mission. They would then reorient the craft upon its return and lower it to the ship deck. The system would fit securely inside the ship when not in use.

Tern’s potentially groundbreaking capabilities have been on the Navy’s wish list in one form or another since World War II. The production of the first practical helicopters in 1942 helped the U.S. military realize the potential value of embedded vertical takeoff and landing (VTOL) aircraft to protect fleets and reduce the reliance on aircraft carriers and land bases.  The Tern demonstrator will bear some resemblance to the Convair XFY-1 Pogo, an experimental ship-based VTOL fighter designed by the Navy in the 1950s to provide air support for fleets. Despite numerous successful demonstrations, the XFY-1 never advanced beyond the prototype stage, in part because the Navy at the time was focusing on faster jet aircraft and determined that pilots would have needed too much training to land on moving ships in rough seas….Moving to [drones removes the need for training aircraft pilots].

Excerpt from DARPA Tern Moves Closer to Full-Scale Demonstration of Unmanned VTOL Aircraft Designed for Small Ships

The VTOL-X Plane Phantom Swift

phantom swift

The US Defense Advanced Research Projects Agency (DARPA) is to undertake in July 2014 conceptual design reviews for the four vertical take-off and landing (VTOL) X-Plane contenders a Boeing programme official disclosed on 24 June 2014.  Announced by DARPA in early 2013, the VTOL X-Plane programme is geared at demonstrating efficient hover and high-speed flight. The specific requirements are that the aircraft achieve a top sustained flight speed of 300 kt to 400 kt; raise aircraft hover efficiency from 60% to at least 75%; present a more favourable cruise lift-to-drag ratio of at least 10, up from the current 5-6; and carry a useful load of at least 40% of the vehicle’s projected gross weight of 10,000-12,000 lb (4,500-5,450 kg).

Of the four contenders, Boeing’s Phantom Swift is currently the only one to have been built (as a 17% scale model) and flown…While DARPA did not specify whether the aircraft be manned or unmanned, all of the entrants have opted for unmanned.

Excerpt from DARPA to progress VTOL X-Plane as Boeing reveals Phantom Swift details,  IHS Jane’s International Defence Review, June 25, 2014

The Super Helicopter: VTOL-X

pave hawk.  Image from wikipedia

From the DARPA website:

The versatility of helicopters and other vertical take-off and landing (VTOL) aircraft make them ideal for a host of military operations. Currently, only helicopters can maneuver in tight areas, land in unprepared areas, move in all directions, and hover in midair while holding a position. This versatility often VTOL aircraft the right aerial platform for transporting troops, surveillance operations, special operations and search-and-rescue missions.

Compared to fixed-wing aircraft, helicopters are slower-leaving them more vulnerable to damage from enemy weapons. Special operations that rely on lightning-quick strikes and medical units that transport patients to care facilities need enhanced speed to shorten mission times, increase mission range, reduce the number of refueling events and, most important, reduce exposure to the adversary.

By their very design, rotary-wing aircraft that take off and land vertically have a disadvantage achieving speeds comparable to fixed-wing aircraft.,,,”For the past 50 years, we have seen jets go higher and faster while VTOL aircraft speeds have flat-lined and designs have become increasingly complex,” said Ashish Bagai, DARPA program manager. “To overcome this problem, DARPA has launched the VTOL X-Plane program to challenge industry and innovative engineers to concurrently push the envelope in four areas: speed, hover efficiency, cruise efficiency and useful load capacity.”  “We have not made this easy,” he continued. “Strapping rockets onto the back of a helicopter is not the type of approach we’re looking for…This time, rather than tweaking past designs, we are looking for true cross-pollinations of designs and technologies from the fixed-wing and rotary-wing worlds.

Excerpt from DARPA EXPERIMENTAL AIRCRAFT PROGRAM TO DEVELOP THE NEXT GENERATION OF VERTICAL FLIGHT, February 25, 2013

See also https://www.fbo.gov/

Sea-Based Armed Drones: Fire Scouts and Laser Missiles

The United States Navy announced that it signed a $17 million contract with Northrop Grumman to arm its fleet of MQ-8B Fire Scout unmanned helicopter drones.  The LA Times reports the maker of the drone will install laser-guided missiles to target drug-runners, pirates, and battleships. This will make the MQ-8B the first, sea-based, armed drone to enter the navy’s arsenal before the X-47B makes its full-time appearance, also in 2014. Between the two craft the Navy will be able to co totally pilot-less for virtually any type of mission it desires.

Robert Johnson, This New Weapons On This MQ-8B Unmanned Helicopter Take The Navy One Step Further From Pilots, BusinessInsider, Nov. 11, 2011