Tag Archives: electronic warfare

The Right Way to Steal

USS Badger Launching Harpoon missile

Chinese government hackers have compromised the computers of a Navy contractor, stealing massive amounts of highly sensitive data related to undersea warfare — including secret plans to develop a supersonic anti-ship missile for use on U.S. submarines by 2020, according to American officials.   The breaches occurred in January and February  2018, the officials said… The hackers targeted a contractor who works for the Naval Undersea Warfare Center, a military organization headquartered in Newport, R.I., that conducts research and development for submarines and underwater weaponry.

Taken were 614 gigabytes of material relating to a closely held project known as Sea Dragon, as well as signals and sensor data, submarine radio room information relating to cryptographic systems, and the Navy submarine development unit’s electronic warfare library…This fact raises concerns about the Navy’s ability to oversee contractors tasked with developing ­cutting-edge weapons.

For years, Chinese government hackers have siphoned information on the U.S. military, underscoring the challenge the Pentagon faces in safeguarding details of its technological advances. Over the years, the Chinese have snatched designs for the F-35 Joint Strike Fighter; the advanced Patriot PAC-3 missile system; the Army system for shooting down ballistic missiles known as Terminal High Altitude Area Defense; and the Navy’s new Littoral Combat Ship, a small surface vessel designed for near-shore operations, according to previous reports prepared for the Pentagon.  In some cases, suspected Chinese breaches appear to have resulted in copycat technologies…

Investigators say the hack was carried out by the Chinese Ministry of State Security, a civilian spy agency responsible for counterintelligence, foreign intelligence and domestic political security. The hackers operated out of an MSS division in the province of Guangdong, which houses a major foreign hacking department….

In September 2015, in a bid to avert economic sanctions, Chinese President Xi Jinping pledged to President Barack Obama that China would refrain from conducting commercial cyberespionage against the United States. …Both China and the United States consider spying on military technology to fall outside the pact.

Excerpts from Ellen Nakashima and Paul Sonne, China hacked a Navy contractor and secured a trove of highly sensitive data on submarine warfare, Washington Post, June 8, 2018

Churning Out Weapons as quickly as Algorithms-dominance in electronic warfare

F-117 stealth plane.Image from wikipedia

US Army Secretary Eric Fanning announced [in August 2016] a new Rapid Capabilities Office to accelerate the development of cyber, electronic warfare…That rapid technological progression is on full display, for example, in eastern Ukraine, where Ukrainian soldiers have been battling Russian-backed forces since 2014. For example, Russian-backed separatists have used EW and GPS-spoofing to jam and misdirect the drones that Ukrainian troops use to scope out enemy positions. “Over the past several years we’ve learned from what we’ve seen from Russia and Ukraine, and later in Syria, and from the different capabilities they’ve brought to the battlefield. We’ve seen the combination of unmanned aerial systems and offensive cyber and advanced electronic warfare capabilities and how they provided Russian forces a new degree of sophistication,” said Fanning…

“My guess is … that after 15 years of doing largely counter-insurgency operations in the Middle East, the Army is now taking a look at how it would do large force-on-force conflict in a place like Europe. ”

The pace of innovation in EW — in the form of novel new waveforms that can disrupt an adversary’s electronics, paint enemy stealth aircraft* etc. — has surprised many in the military. That’s because EW innovation has become less and less a hardware challenge and more of a software challenge. You can make a new weapon as quickly as your algorithm can pull together a new waveform from the spectrum. But the military, too often, still procures EW assets the same way it buys jets and boats. Slowly.

Excerpts from To Counter Russia’s Cyber Prowess, US Army Launches Rapid-Tech Office, DefenseOne, Aug. 31, 2016

*Radar-absorbent material (RAM), often paints used on aircraft,: absorb radiated energy from a ground or air based radar station into the coating and convert it to heat rather than reflect it back thus avoiding detection by the radar.

The Sixth Domain of Warfare: DARPA

How Lockheed Martin’s SEWIP Block system will protect US  fleet from anti-ship missile threats.  Image from Lockheed Martin.

The electromagnetic spectrum is the sixth domain of modern warfare. The effectiveness of combat operations in the land, sea, air, space, and cyber domains depends on our ability to control and exploit the spectrum, because it is critical to our capabilities in navigation. While the spectrum is at the heart of current and  future warfare, it remains highly contested and congested, and future info-centric warfare will require more access than ever before. DARPA/’s Microsystems Technology Office is developing components to effectively operate in a dynamic, contentious spectrum, which includes research in hardware components for maximal flexibility, machine learning for spectral reasoning, and fast development cycles for fielding complex electromagnetic systems.

Excerpt from DARPA-SN-16-59, MTO Office-wide Proposers Day, September 20, 2016

How Fast is Fast? Try 60 billion times per second

GLOBALFOUNDRIES manufacturing facility, Dresden, Germany

From the DARPA website

Competition for scarce electromagnetic (EM) spectrum is increasing, driven by a growing military and civilian demand for connected devices. As the spectrum becomes more congested, the Department of Defense (DoD) will need better tools for managing the EM environment and for avoiding interference from competing signals. One recent DARPA-funded advance, an exceptionally high-speed analog-to-digital converter (ADC), represents a major step forward. The ADC could help ensure the uninterrupted operation of spectrum-dependent military capabilities, including communications and radar, in contested EM environments. The advance was enabled by 32 nm silicon-on-insulator (SOI) semiconductor technologies available through DARPA’s ongoing partnership with GlobalFoundries, a manufacturer of highly-advanced semiconductor chips.

The EM spectrum, whose component energy waves include trillionth-of-a-meter-wavelength gamma rays to multi-kilometer-wavelength radio waves, is an inherently physical phenomenon. ADCs convert physical data—that is, analog data—on the spectrum into numbers that a digital computer can analyze and manipulate, an important capability for understanding and adapting to dynamic EM environments.  Today’s ADCs, however, only process data within a limited portion of the spectrum at a given time. As a result, they can temporarily overlook critical information about radar, jamming, communications, and other potentially problematic EM signals. DARPA’s Arrays at Commercial Timescales (ACT) program addressed this challenge by supporting the development of an ADC with a processing speed nearly ten times that of commercially available, state-of-the-art alternatives. By leveraging this increased speed, the resulting ADC can analyze data from across a much wider spectrum range, allowing DoD systems to better operate in congested spectrum bands and to more rapidly react to spectrum-based threats.

How fast is fast? The new ADC samples and digitizes spectrum signals at a rate of over 60 billion times per second (60 GigaSamples/sec). …The new ADC can provide a “one-stop shop” for processing radar, communications and electronic warfare signals.

Desirable as these blazing sampling speeds are, they also pose challenges. The amount of data generated is staggering, reaching nearly a terabyte per second. This high data rate requires on-chip data-management circuitry that allows signals to be processed locally on the ADC, reducing the amount of data that must be communicated to neighboring electronics. This on-board digital signal processing burns quite a bit of power and also demands state-of-the-art transistors. The 32 nm SOI technology offered by Global Foundries, the only certified DoD supplier of this circuit technology, provided ACT with the leading-edge transistors needed to sample and process the RF spectrum without exceeding power or data-transfer limitations.

Upcoming ACT designs will go further. By using GlobalFoundries’ even more advanced 14 nm technology, ACT’s next generation of ADCs aim to reduce power requirements by an additional 50 percent and enable yet smaller and lighter systems that can sample even greater swaths of the spectrum.

Excerpts from New Chips Ease Operations In Electromagnetic Environs, Jan. 11, 2016

Space-the Wild West and the Five Eyes

A radome at RAF Menwith Hill, a site with satellite downlink capabilities believed to be used by ECHELON.  Image from wikipedia

Space is a current and future battleground without terrain, where invisible enemies conceivably could mount undetectable attacks to devastating effect if the right deterrent and defensive plans aren’t pursued now, the assistant defense secretary for global strategic affairs told a think tank audience on Sept. 17, 2013  Madelyn R. Creedon spoke to a Stimson Center gathering whose audience included analysts focused on the question of deterrence in space. The center released a publication this week titled “Anti-satellite Weapons, Deterrence and Sino-American Space Relations,” presenting a number of essays examining various perspectives on space deterrence.

Creedon noted that in Defense Department parlance, deterrence is “the prevention of action by the existence of a credible threat of unacceptable counteraction and/or the belief that the cost of action outweighs the perceived benefits.” In other words, she said, if deterrence is effective, an adversary has or believes he has more to lose than to gain by attacking.  Deterrence remains a core defense strategy for the United States, she added, and the nation’s nuclear deterrent is “still alive and well.”  Creedon acknowledged that one classic approach to considering space deterrence — that is, preventing potential enemies from attacking U.S. or partner satellites and other military or economic assets in space — is to try to apply lessons learned during the Cold War. Then, the United States and the Soviet Union kept an uneasy diplomatic truce and piled up enough nuclear weapons to guarantee mutually assured destruction.

But one flaw to comparing the two deterrent challenges, she said, is that an attack that disables a satellite, unlike one from a nuclear warhead that flattens a major city, doesn’t threaten a nation’s existence. Another is that the two superpowers spent decades constructing an elaborate, mirrored, deterrent Cold War architecture and protocols, while space is still, comparatively, “the Wild West.” A third is that an attack in space or cyberspace may rely on digital rather than conventional weapons, and so could occur without warning or even detection.

“If there is an attack against a space asset, it isn’t visible,” she said. “You can’t watch it on CNN, and unless you’re directly affected by the capability that the space assets provide, you’re probably completely oblivious that the attack happened.”

She said DOD is developing and implementing what safeguards it can implement in space using four mutually supportive elements to deter others from taking action against U.S. assets:

— Working to internationalize norms and establish a code of conduct to enhance stability;

— Building coalitions to enhance security;

— Adding resilience to U.S. space architectures; and

— Preparing for an attack on U.S. and allied space assets using defenses “not necessarily in space.”

“We believe this four-element approach … will bolster deterrence,” Creedon said.

The department is working with the State Department and international partners to define elements of good behavior in space, she said. “States must remain committed to enhance the welfare of humankind by cooperating with others to maintain the long-term sustainability, safety, security and stability of the outer-space environment,” she added.  Creedon said work is underway to build deterrent coalitions and increase space awareness. She said the “Five Eyes” nations, which include the United States, United Kingdom, Canada, Australia and New Zealand, are extending their intelligence cooperation to expand their collective space situational awareness

The United States is meanwhile working to lower the benefit to potential attackers by employing more satellites, participating in satellite constellations with other countries and purchasing payload space on commercial satellites when feasible.  Creedon said the U.S. approach to space deterrence is similar to its strategy in any domain: take “prudent preparations to survive, and to operate through, and, hopefully, prevail in any conflict.”

By Karen Parrish, Official Describes Evolution of Space Deterrence, American Forces Press Service, Sept. 19, 2013

Beyond GPS: DARPA All Source Positioning and Navigation Program

DARPA’s All Source Positioning and Navigation (ASPN) program seeks to enable low cost, robust, and seamless navigation solutions for military users on any operational platform and in any environment, with or without GPS. In particular, ASPN will develop the architectures,  abstraction methods, and navigation filtering algorithms needed for rapid integration and reconfiguration of any combination of sensors. This will enable rapid adaptation to evolving missions as well as reduction of the system integration costs and time-to-market for navigation solutions in general.

The goal of Phase 2 of ASPEN is to address the issues of optimization and real-time operation, showing capabilities beyond basic plug-and-play flexibility. Solutions must be capable of adapting to a diverse set of sensor and IMU inputs and selectively choosing the subset of measurements that produces the best possible solution, ideally mirroring the result from a tuned filter solution for that same scenario….Phase 2 solutions will need to demonstrate real-time operation in representative field (non-laboratory) environments. Although adaptability is the main goal of the ASPN program, the possibility of ASPN accuracy being substantially better than current state of art should be considered, given accommodation by ASPN of larger and more diverse sensor suites, ease of optimizing ASPN to immediate applications, and potential synergistic benefits of an open architecture.