Tag Archives: global warming

Climate Change–procrastinators and their victims

KIRIBATI. image from http://climatechange.dreamhosters.com/_old/CAUSES-EFFECTS/KIRIBATI.jpg

Global carbon emissions were 58% higher in 2012 than they were in 1990. The atmospheric concentration of carbon dioxide has risen from just under 340 parts per million in 1980 to 400 in 2015.  To stand a fair chance of keeping warming to just 2°C by the end of the century—the goal of global climate policy—cumulative carbon emissions caused by humans must be kept under 1 trillion tonnes. Estimates vary but, according to the Intergovernmental Panel on Climate Change, the total had hit 515 billion tonnes by 2011. Climate Interactive, a research outfit, reckons that if emissions continue on their present course around 140 billion tonnes of greenhouse gases will be released each year and temperatures could rise by 4.5°C by 2100. And even if countries fully honour their recent pledges, temperatures may still increase by 3.5°C by then.

The world is already 0.75°C warmer than before the Industrial Revolution….

Melting glacier ice, and the fact that warmer water has a larger volume, mean higher sea levels: they have already risen by roughly 20cm since 1880 and could rise another metre by 2100. That is perilous for low-lying islands and flat countries: the government of Kiribati, a cluster of tropical islands, has bought land in Fiji to move residents to in case of flooding. Giza Gaspar Martins, a diplomat from Angola who leads the world’s poorest countries in the climate talks, points out that they are particularly vulnerable to the effects of a warming planet. Money alone, he argues, will not fix their problems. Without steps to reduce emissions, he predicts, “there will be nothing left to adapt for.”…

For every 0.6°C rise in temperature, the atmosphere’s capacity to hold water grows by 4%, meaning storms will pour forth with greater abandon. The rains of the Indian monsoon could therefore intensify, cutting yields of cereals and pulses.

Climate change seems also to be making dry places drier, killing crops and turning forests into kindling. Forest fires in Indonesia, more likely thanks to the current El Niño weather phenomenon, could release 2 billion tonnes of carbon dioxide, about 5% of annual emissions due to human activity, says Simon Lewis of University College London. In recent months fires have swallowed more than 2.4m hectares of American forests. Alaska suffered 80% of the damage—a particular problem because the soot released in these blazes darkens the ice, making it less able to reflect solar radiation away from the Earth.

Developments in the Arctic are worrying for other reasons, too. The region is warming twice as fast as the rest of the world, a trend that could start a vicious cycle. Around 1,700 gigatonnes of carbon are held in permafrost soils as frozen organic matter. If they thaw, vast amounts of methane, which is 25 times more powerful as a global-warming gas than carbon dioxide when measured over a century, will be released. One hypothesis suggests that self-reinforcing feedback between permafrost emissions and Arctic warming caused disaster before: 55m years ago temperatures jumped by 5°C in a few thousand years…

And on September 29th Mark Carney, the governor of the Bank of England, warned that though measures to avoid catastrophic climate change are essential, not least for long-term financial stability, in the shorter term they could cause investors huge losses by making reserves of oil, coal and gas “literally unburnable”.

Excerpts from Climate Change: It’s Getting Hotter, Economst, Oct. 3, 2015, at 63

 

Weather Modification in China

A Dry River in China, Image from wikipedia

China aims to induce more than 60 billion cubic metres of additional rain each year by 2020, using an “artificial weather” programme to fight chronic water shortages…China’s water resources are among the world’s lowest, standing at 2,100 cubic metres per person, or just 28 per cent of the world average. Shortages are particularly severe in the country’s northeast and northwest.

China has already allocated funds of 6.51 billion yuan (S$1.45 billion) for artificial weather creation since 2008, the State Council, or cabinet, said in a document setting out the programme from 2014 to 2020. “Weather modification has an important role to play in easing water shortages, reducing natural disasters, protecting ecology and even safeguarding important events,” it added.  The figure of 60 billion cu.m is equivalent to more than one-and-a-half times the volume of the Three Gorges reservoir, part of the world’s largest hydropower plant.

China sets 2020 “artificial weather” target to combat water shortages, Reuters, Jan. 13, 2015

Tar Sands from Canada to Europe

dirty deals

Canada and the US have threatened to pull out of TTIP [Transatlantic Trade and Investment Partnership] trade talks unless the EU ignores the massive emissions of oil from tar sands – and the EU is collapsing under the pressure…For five long years the federal government and the oil industry have lobbied against the European Union labeling oilsands (also called tar sands) bitumen as ‘dirty oil’ in its Fuel Quality Directive (FQD).  A new report [authored by environmental groups] reveals the how recent involvement of the US in the lobby offensive to keep the EU market open for bitumen exports has tipped the scales in favour of oilsands proponents….

The report shows the EU Fuel Quality Directive, a piece of legislation designed to reduce global warming greenhouse gas (GHG) emissions in the EU’s transportation sector, is unlikely to acknowledge fuels from different sources of oil – conventional oil, oilsands, oil shale – have different carbon footprints.  All oil is the same – no matter how great the disparity in emissions  Instead all oils will more than likely be treated as having the same GHG emissions intensity ‘value’ in the Directive. This is exactly what Canada, the oil industry and now the US have been pushing for…

The EU has not fallen for the federal government’s argument that bitumen produces only marginally more GHG emissions than conventional oil in extraction, processing, and use.  A European Commission study found bitumen’s carbon footprint is between 12% – 40% higher than conventional oil as so much of the bitumen produced from the tar sands is burnt to fuel the energy-intensive extraction process.  The report reveals trade, not science, is the cause of the EU backing off from implementing the Fuel Quality Directive as it was originally meant to be implemented.

The US in some ways has been more open [than Canada] about its lobbying against the Fuel Quality Directive.  US Trade Representative Michael Froman confirmed he “raised these issues [of the FQD implementation] with senior Commission officials on several occasions, including in the context of the Transatlantic Trade and Investment Partnerships (TTIP).” The TTIP is the highly controversial trade agreement between the US and the EU currently under negotiation.  European Commission documents obtained by Friends of the Earth Europe reveal the US trade missions has “substantive concerns” with the Fuel Quality Directive singling out fuels produced from bitumen as having a higher carbon footprint than conventional oil.    Like Canada and the oil industry, the US wants all oil – regardless of GHG emissions – to be treated the same as conventional oil in the Directive…Recently eleven members of US Congress sent a letter to the US trade mission expressing their concerns “that official US trade negotiations could undercut the EU’s commendable efforts to reduce carbon pollution.”

Excerpts, Derek LeahyIgnore tar sands emissions! EU buckles under US, Canada pressure in TTIP talks, Ecologist, July 23, 2014

Climate Change Politics: IPCC report leaked 2013

Carbon_dioxide_3D_ball, Ball-and-stick model of the carbon dioxide molecule. Oxygen in red, carbon in black

Climate sensitivity [:]This is the measure used by researchers of how much they expect the world’s average temperature to increase in response to particular increases in levels of carbon dioxide in the atmosphere. According to one table from the unpublished [IPCC] report, which was seen by The Economist, at CO2 concentrations of between 425 parts per million and 485 ppm, temperatures in 2100 would be 1.3-1.7°C above their pre-industrial levels. That seems lower than the IPCC’s previous assessment, made in 2007. Then, it thought concentrations of 445-490 ppm were likely to result in a rise in temperature of 2.0-2.4°C.

climate change leaked report 2013

(Source the Economist, July 20, 2013, at 71)

The two findings are not strictly comparable. The 2007 report talks about equilibrium temperatures in the very long term (over centuries); the forthcoming one talks about them in 2100. But the practical distinction would not be great so long as concentrations of CO2 and other greenhouse-gas emissions were stable or falling by 2100. It is clear that some IPCC scientists think the projected rise in CO2 levels might not have such a big warming effect as was once thought.

There are several caveats. The table comes from a draft version of the report, and could thus change. It was put together by the IPCC working group on mitigating climate change, rather than the group looking at physical sciences. It derives from a relatively simple model of the climate, rather than the big complex ones usually used by the IPCC. And the literature to back it up has not yet been published.

Still, over the past year, several other papers have suggested that views on climate sensitivity are changing. Both the 2007 IPCC report and a previous draft of the new assessment reflected earlier views on the matter by saying that the standard measure of climate sensitivity (the likely rise in equilibrium temperature in response to a doubling of CO2 concentration) was between 2°C and 4.5°C, with 3°C the most probable figure. In the new draft, the lower end of the range has been reduced to 1.5°C and the “most likely” figure has been scrapped. That seems to reflect a growing sense that climate sensitivity may have been overestimated in the past and that the science is too uncertain to justify a single estimate of future rises.

If this does turn out to be the case, it would have significant implications for policy. Many countries’ climate policies are guided by the IPCC’s findings. They are usually based on the idea (deriving in part from the IPCC) that global temperatures must not be allowed to increase by more than 2°C above pre-industrial levels, and that in order to ensure this CO2 concentrations should not rise above 450 ppm. The draft table casts doubt on how solid the link really is between 450 ppm and a 2°C rise. It remains to be seen whether governments conclude from this that it is safe to let CO2 concentrations climb even further, or whether (as some will doubtless argue) a 2°C rise was too much anyway and it is now possible to aim for less.

Excerpt, Climate science: Sensitive information, Economist, July 20, 2013, at 70

See also Coerced Transparency: the leaked IPCC Report 2012

The Third Pole: How Climate Change is Changing the Himalayas

image from wikipedia

Though the amount of ice on the plateau of Tibet and its surrounding mountains, such as the Himalayas, Karakoram and Pamirs, is a lot smaller than that at the poles, it is still huge. The area’s 46,000 glaciers cover 100,000 square kilometres (40,000 square miles)—about 6% of the area of the Greenland ice cap. Another 1.7m square kilometres is permafrost, which can be up to 130 metres deep. That is equivalent to 7% of the Arctic’s permafrost. Unlike the ice at the poles, the fate of this ice affects a lot of people directly. The area is known by some as Asia’s water tower, because it is the source of ten of the continent’s biggest rivers. About 1.5 billion people, in 12 countries, live in the basins of those rivers. Welcome, then, to the Earth’s “Third Pole”.

Until recently studies of the Third Pole were piecemeal—not surprising, given its remoteness, the altitude, the harsh weather and the fact that little love is lost between the countries among which it is divided. In 2009, however, Yao Tandong of the Institute of Tibetan Plateau Research, in Beijing, Lonnie Thompson of the Ohio State University and Volker Mosbrugger of the Senckenberg World of Biodiversity, in Frankfurt, started an international programme involving these countries, called the Third Pole Environment (TPE). Last month, its fourth workshop met in Dehradun, India.

One question on everyone’s mind is whether the glaciers are retreating, as is happening in parts of the real polar regions. The Intergovernmental Panel on Climate Change’s report in 2007 foolishly suggested that the Himalayas’ glaciers could disappear as early as 2035. Given the amount of ice they contain, it would take weather gods armed with blow torches to melt them that quickly, and this suggestion was rapidly discredited…..

One outcome of the workshop, then, has been to establish that the overall ice cover of the Third Pole, like that of the two real poles, is shrinking. Another is to show how precarious and piecemeal data about the area are. Its role as the source of so many rivers means that absence of data matters. The Chinese Academy of Sciences, of which both Dr Yao’s and Dr Wu’s institutes are part, has therefore set up a fund of 400m yuan ($65m) for research on the Third Pole and, crucially, a quarter of this is earmarked for work outside China.

The TPE’s researchers will now monitor a set of bellwether glaciers every six months. They will set up observatories to measure solar radiation, snowfall, meltwater and changes in the soil, as well as air temperature, pressure, humidity and wind. And they plan to take cores from the ice on the Tibetan plateau. These will let them reconstruct the area’s climate over the past few hundred thousand years. Together, these data will give them a better grip on how much—and why—the Third Pole is changing.

The climate of Tibet: Pole-land, Economist,, May 11, 2013,  at 84

Exceeding the Carbon Budget:industry bets that climate policies will fail

coal mine china. Image from wikipedia

Several  reports suggest that markets are overlooking the risk of “unburnable carbon”. The share prices of oil, gas and coal companies depend in part on their reserves. The more fossil fuels a firm has underground, the more valuable its shares. But what if some of those reserves can never be dug up and burned?

If governments were determined to implement their climate policies, a lot of that carbon would have to be left in the ground, says Carbon Tracker, a non-profit organisation, and the Grantham Research Institute on Climate Change, part of the London School of Economics. Their analysis starts by estimating the amount of carbon dioxide that could be put into the atmosphere if global temperatures are not to rise by more than 2°C, the most that climate scientists deem prudent. The maximum, says the report, is about 1,000 gigatons (GTCO2) between now and 2050. The report calls this the world’s “carbon budget”.

Existing fossil-fuel reserves already contain far more carbon than that. According to the International Energy Agency (IEA), in its “World Energy Outlook”, total proven international reserves contain 2,860GTCO2—almost three times the carbon budget. The report refers to the excess as “unburnable carbon”.

Most of the reserves are owned by governments or state energy firms; they could be left in the ground by public-policy choice (ie, if governments took the 2°C target seriously). But the reserves of listed oil companies are different. These are assets developed using money raised from investors who expect a return. Proven reserves of listed firms contain 762GTCO2—most of what can prudently be burned before 2050. Listed potential reserves have 1,541GTCO2 embedded in them.

So companies and governments already have far more oil, gas and coal than they need (again, assuming temperatures are not to rise by more than 2°C). Logically, the response to this would be for governments to leave their reserves untouched and for companies to run theirs slowly down, returning more of what they earn to shareholders. Neither of these things is happening. State-owned companies are taking an increasing share of total energy output. And in 2012, says Carbon Tracker, the 200 largest listed oil, gas and coal companies spent five times as much—$674 billion—on developing new reserves as they did returning money to shareholders ($126 billion). ExxonMobil alone plans to spend $37 billion a year on exploration in each of the next three years.

Such behaviour, on the face of it, makes no sense. One possible explanation is that companies are betting that government climate policies will fail; they will be able to burn all their reserves, including new ones, after all. This implies that global temperatures would either soar past the 2°C mark, or be restrained by a technological fix, such as carbon capture and storage, or geo-engineering.Recent events make such a bet seem rational. On April 16th the European Parliament voted against attempts to shore up Europe’s emissions trading system against collapse. The system is the EU’s flagship environmental policy and the world’s largest carbon market.  Putting it at risk suggests that Europeans have lost their will to endure short-term pain for long-term environmental gain. Nor is this the only such sign. Several cash-strapped EU countries are cutting subsidies for renewable energy. And governments around the world have failed to make progress towards a new global climate-change treaty. Betting against tough climate policies seems almost prudent.

The markets are [also] mispricing risk by valuing companies as if all their reserves will be burned. Investors treat reserves as an indicator of future revenues. They therefore require companies to replace reserves depleted by production, even though this runs foul of emission-reduction policies. Fossil-fuel firms live and die by a measure called the reserve replacement ratio, which must remain above 100%. Companies see their shares marked down if the ratio falls, even when they pull the plug on dodgy, expensive projects. This happened to Shell, for example, when it suspended drilling in the Arctic in February….

At the moment neither public policies nor markets reflect the risks of a warmer world.

Energy Firms and Climate Change: Unburnable Fuel, Economist, May 4, 2013, at 68

Dykes for Kickbacks: flooding Vietnam

Ho Chi Minh City Vietnam

Ho Chi Minh City (known locally as HCMC), Vietnam, a city full of rivers and canals,   has so far been spared a devastating flood, and donors have so far been eager to help. The World Bank, for example, has upgraded stormwater and canal infrastructure in a few central districts, and on April 8th, 2013 officials from the Dutch city of Rotterdam were in town to promote a joint Dutch-Vietnamese project designed to help HCMC adapt to climate change.Yet nearly half the city lies less than one metre above sea level, and scientists say groundwater extraction, which causes land subsidence, may be having a huge unseen effect. Nearly 70% of the city is already vulnerable to extreme flooding, according to the Asian Development Bank.

Flood risks are rising in HCMC’s lower-lying districts, in part because the property boom that accompanied Vietnam’s 2007 entry to the World Trade Organisation led many developers to build wherever they could. One potential victim is an Intel factory inside a high-tech park on HCMC’s eastern outskirts. The threat to such a big firm is troubling because the city accounts for more than half of foreign direct investment in Vietnam, and exports have helped offset weak consumer demand. In Vietnam urban floods also pose public health risks in the form of outbreaks of cholera or dysentery…

The government is promoting a plan to build a 172-km (106-mile), $2.6 billion system of ring dykes to protect urban areas west of the Saigon River. But the financing is not yet secure, and the World Bank has said such large flood-control solutions may be unsustainable.

A better option may be a smaller $1.4 billion dyke proposed by Royal HaskoningDHV, a Dutch consultancy that has managed similar projects in New Orleans and other flood-prone places. But officials at the Ministry of Agriculture and Rural Development typically prefer expensive infrastructure projects, which offer opportunities for kickbacks. “They love dykes,” says Ho Long Phi, a professor at Vietnam National University in HCMC.  Mr Phi may be Saigon’s best flood-control asset. Unlike many Vietnamese officials, he understands that bigger flood-protection measures are not necessarily better, and that if the city is to prosper in the long term, it will need to work with, rather than against, nature. Today’s policies will only transfer flooding risks to future generations. In Mr Phi’s view, the only thing that may change the government’s short-sighted approach to flood prevention is a catastrophe,

Up a creek: A low-lying city must take drastic action to prevent flooding, Economist, May 4,  2013, at 41