Tag Archives: militarization of space

The First to Shoot…from Space

image from NASA.

North Korea’s preparations to launch a more advanced reconnaissance satellite with a high-resolution scanning capability threaten to push Asia’s space race deeper into the military theater.  The Kwangmyongsong-5 Earth-exploration satellite, likely to be packaged with a separate communications satellite, will technically allow North Korea to transmit data down to the ground for the first time, thus offering real-time intelligence for potential ballistic-missile strikes.

This is well short of the technological capacity needed to deploy orbital weapon systems, but will cause some unease among Asian power-brokers China, Japan and India as they pour money into the last strategic frontier of outer space.  Space programs in Asia have largely been driven by competition for the US$300 billion global commercial transponders market, which is expected to double by 2030 if demand holds.

A shift toward miniature satellites of less than 20 kilograms, mostly used by governments and smaller companies, has drawn nations as diverse as Singapore, Pakistan, Vietnam and South Korea into a field led by Japan and China, with India a more recent player.

Japan placed two satellites in different orbits for the first time on December 2017, displaying a technical edge aimed at reducing launch costs for commercial clients. India announced this week that it had successfully tested a GSLV Mark III rocket that can lift a 4-ton satellite into orbit. In 2017, it managed to launch 104 satellites of varying sizes in just one operation. China has loftier ambitions, including a lunar landing some time in 2018, after sending a roving module down a steep crater on the moon in 2013. About 40 Chinese launches are likely in 2018, mainly to boost communications.  India and Japan are both locked in undeclared space races with China that go well beyond commercial rivalries and have muddied the debate over North Korea’s shadowy aims….

“Militarization” refers to any systems that enhance the capability of forces in a conventional setting, such as intelligence, communications and surveillance. “Weaponization” is the physical deployment of weapons in outer space or in a ground mode where they can be used to attack and destroy targets in orbit.  The United Nations Treaty on Outer Space prohibits the deployment of weapons of mass destruction in space, but the US has blocked efforts to ban space weapons outright. In 2007, Washington said it would “preserve its rights, capabilities, and freedom of action in space.”

Excerpts from  ALAN BOYD,  Asia’s Space Race Gathers Pace, Asia Times, Jan. 6, 2017

The Quiet Revolution in Space

Orbits around earth. Black dots indicate geostationary orbit (GEO) Blue color indicates low earth orbit (LEO). Image from wikipedia

National security critically depends on space, and the Defense Advanced Research Projects Agency (DARPA)is focused today on creating the capabilities needed to help make that environment a real-time operational domain, DARPA Director Dr. Arati Prabhakar…

“The questions we ask ourselves at DARPA about the space domain … is what would it take to make the space domain robust for everything that we need militarily and for intelligence, and what would it take to make space a real-time operational domain, which it’s not at all today,” the director said, noting that many other nation-states now are active in orbit and space is a domain where conflict is becoming a real possibility.

Through a national security lens, she added, nothing needed from an intelligence or military perspective can be done effectively without access to space. Something as simple as navigation completely depends on GPS in nearly every part of the world and in every operating regime.

In an era of declining budgets and adversaries’ evolving capabilities, quick, affordable and routine access to space is increasingly critical for national and economic security. Today’s satellite launch systems require scheduling years in advance for a limited inventory of available slots and launches often cost hundreds of millions of dollars each. The Defense Advanced Research Projects Agency created its Experimental Spaceplane, or XS-1, program to help overcome these challenges and reduce the time to get capabilities to space. DARPA artist-concept graphics  “Because of the demands on launch, from the day you know you have to put an asset on orbit to the time you can plan on a launch today is still unacceptably long,” Prabhakar said.

Commercial capabilities will help, she added, “but if in a time of war we imagine if we could go to space not in a month or next week but tomorrow, think about how that would completely change the calculus for an adversary that’s thinking about [using an antisatellite] weapon to take out one of our satellites

”With that ambition in mind, DARPA is now starting Phase 2 of its Experimental Spaceplane, or XS-1.“It’s a reusable first stage that’s designed to be able to put 3,000 or 5,000 pounds into low earth orbit … at a very low cost point — a few million dollars — but very significantly the objective on the DARPA program is by the end of the program to fly that spacecraft 10 times in 10 days,” Prabhakar said, “something that’s inconceivable with any of the spacecraft we have today.”

A second piece of the puzzle is what can be done in orbit, she added, referring to low earth orbit, or LEO, an orbit around Earth whose altitude is between 99 and 1,200 miles.

“We’re doing some amazing work with geo[synchronous]-robotics and rethinking [geostationary Earth orbit]-architectures once you have an asset that would allow you to extend the life or do inspection or simple repairs at GEO, which is something you can’t do today.  GEO [geostationary orbit]is a stable region of space 22,370 miles from Earth.  And because GEO is a stable environment for machines — but hostile for people because of high radiation levels — DARPA thinks the key technology there is space robotics.  DARPA’s Phoenix program seeks to enable GEO robotics servicing and asset life extension while developing new satellite architectures to reduce the cost of space-based systems.

The program’s goal is to develop and demonstrate technologies that make it possible to inspect and robotically service cooperative space systems in GEO and to validate new satellite assembly architectures. Phoenix has validated the concept that new satellites could be built on orbit by physically aggregating “satlets” in space, according to DARPA.

Satlets are small independent modules that can attach together to create a new low-cost, modular satellite architecture, DARPA says. Satlets incorporate essential satellite functionality — power supplies, movement controls, sensors and others — and share data, power and thermal management capabilities. DARPA now is working to validate the technical concept of satlets in LEO [Low earth orbit an orbit around Earth whose altitude is between 99 and 1,200 miles.]

Excerpts from  Cheryl Pellerin Director: DARPA Space Projects Critical to Shifting Trajectories , US DOD News, Nov. 22, 2016

 

Congested and Scary–How to Make Space Friendly for Military Use

asteroid ida wth its own moon. image from wikipedia

From the DARPA website

The volume of Earth’s operational space domain is hundreds of thousands times larger than the Earth’s oceans. It contains thousands of objects hurtling at tens of thousands of miles per hour. The scales and speeds in this extreme environment are difficult enough to grasp conceptually, let alone operationally, as is required for commanders overseeing the nation’s increasingly critical space assets.

Current [US] space domain awareness tools and technologies were developed when there were many fewer objects in space. Only a few nations could even place satellites in orbit, and those orbits were easily predictable without advanced software tools. That situation has changed dramatically in the past decade with a developing space industry flooding once lonely orbits with volleys of satellite constellations. Despite this much more complex and chaotic environment, commanders with responsibility for space domain awareness often rely on outdated tools and processes—and thus incomplete information—as they plan, assess, and execute U.S. military operations in space.

To help address these technical and strategic challenges, DARPA is launching the first of two planned efforts under the Agency’s new Hallmark program, which has the overarching goal to provide breakthrough capabilities in U.S. space command and control. This first effort, the Hallmark Software Testbed (Hallmark-ST), has as its primary goal the creation of an advanced enterprise software architecture for a testbed for tools that will integrate a full spectrum of real-time space-domain systems and capabilities. The testbed would be used to expedite the creation and assessment of a comprehensive set of new and improved tools and technologies that could be spun off into near-term operational use for the Defense Department’s Joint Space Operations Center (JSpOC) and Joint Interagency Combined Space Operations Center (JICSpOC).

“For example, an intuitive user interface incorporating 3-D visualization technology would present complex information in novel ways and provide commanders with unprecedented awareness and comprehension. An advanced testbed featuring playback and simulation capabilities would significantly facilitate research and development activities, experiments, and exercises to evaluate new technologies for their impact on space command and control capabilities.”

The enterprise architecture would be the backbone of a long-term testbed, the Hallmark Space Evaluation and Analysis Capability (SEAC), anticipated to be located in Northern Virginia.

Excerpts from Hallmark Envisions Real-Time Space Command and Control,  www. darpa. mil, June 17, 2016

See alsoHallmark Software Testbed (Hallmark-ST)/Solicitation Number: DARPA-BAA-16-40, June 17, 2016 Federal Business Opportunities

Space Ambition, China

china national space administration

After decades hiding deep in China’s interior, the country’s space-launch programme is preparing to go a bit more public. By the tourist town of Wenchang on the coast of the tropical island of Hainan, work is nearly complete on China’s fourth and most advanced launch facility…Secrecy remains ingrained—soldiers at a gate politely but firmly decline to say what they are guarding.

The decision to build the base on Hainan was made for technical reasons: its proximity to the equator, at a latitude of 19 degrees north, will allow rockets to take better advantage of the kick from the Earth’s rotation than is currently possible with launches from China’s other bases which were built far inland at a time of cold-war insecurity. That will allow a bigger payload for each unit of fuel—a boon for China’s space ambitions, which include taking a bigger share of the commercial satellite-launch market, putting an unmanned rover on Mars around 2020, completing a manned space station around 2022 and possibly putting a person on the moon in the coming decade, too. By 2030 China hopes to test what could be one of the world’s highest-capacity rockets, the Long March 9.have no explanation for the apparent delay. Secrecy is a difficult habit to shake off.

Excerpt from Space: Ready for launch,  Economist, Jan. 10, 2015, at 40

The Militarization of Space: Japan

Ohsumi satellite, image from wikipedia

Japan is shifting its space program toward potential military uses in a new policy hailed on as a “historic turning point” by Prime Minister Shinzo Abe, who wants to strengthen defence and boost exports.  The move comes as emerging powers such as China and India join the United States to expand space activities for commercial and security purposes.

Last year, Abe eased a postwar curb on arms exports and on allowing troops to fight overseas, as part of a more robust military and diplomatic posture for Japan…

The new measures will see Tokyo increase its fleet of global-positioning satellites to seven over the next decade, up from one now, to make Japan independent of other countries for uses from navigating vehicles to guiding weapons systems. Japan will also step up the number of its information gathering satellites, which collect pictures of vessels and military facilities and measure sea surface temperatures for submarine detection, from four now.  “The security environment surrounding Japan is getting tougher, and the importance of space is getting bigger for safeguarding our security,” the government said in a report.

Japan is targeting sales of five trillion yen ($42 billion) of space-related hardware over the next decade by stimulating domestic demand and helping manufacturers win overseas orders, the report said.  It did not give a comparative figure for the past 10 years. But such sales are estimated to total a little more than 300 billion yen annually now, a Cabinet Secretariat official said.  Japan’s major satellite manufacturers include Mitsubishi Electric Corp and NEC Co

Japan reorients space effort to bolster security, drive exports, Reuters, Jan. 9, 2014

The Militarization of Japan: the Fourth Force

China Japan

Japan will add a new division to its military or Self-Defense Forces in 2019, to protect equipment in orbit from space debris as well as other attacks, a source familiar with Japan-U.S. relations said, according to a report by the South China Morning Post.

Japan revised a law regarding its non-military activities in space in 2008, allowing the creation of a “space force,” which will initially be responsible for monitoring dangerous debris floating within close vicinity of the Earth, as well as protect satellites from collisions or attacks, according to the report, which added that the U.S. has been informed of the development by the Japanese Defense Ministry. There are around 3,000 fragments of space debris currently at risk of smashing into reconnaissance or communication satellites around the Earth.  Japan will assist the U.S. military with the information it obtains through this program, and looks to strengthen bilateral cooperation in space, or the “fourth battlefield,” the report said.  The “fourth force” will initially use radar and telescope facilities in the Okayama prefecture that the defense ministry acquired from the Japan Space Forum, which also owns the Spaceguard Center radar facility in Kagamino and a telescope facility in Ihara.

Units from Japan’s Air Self-Defense Force are currently being considered by the defense ministry to make up parts of the new space force. And, the Japanese ministries of defense, education, culture, sports, science and technology, along with the Japan Aerospace Exploration Agency, or JAXA, will jointly acquire the radar and telescope facilities from the Japan Space Forum, a Tokyo-based think tank that coordinates aerospace-related activities among government, industry and academia.

Japan and the U.S. have reportedly been working on a space force since 2007, when China tested its satellite destruction capabilities by launching a missile against one of its own satellites and destroyed it.  In May, at a space development cooperation meeting held in Washington, the Japanese and U.S. governments agreed to increase cooperation in using satellites for monitoring space debris, marine surveillance, and to protect one another’s space operations. Japan also pledged to share information acquired by JAXA with the U.S. Strategic Command.

Excerpts from Alroy Menezes, Japan’s ‘Space Force’ To Protect Satellites In Orbit, International Business Times, Aug. 4, 2014

Space-the Wild West and the Five Eyes

A radome at RAF Menwith Hill, a site with satellite downlink capabilities believed to be used by ECHELON.  Image from wikipedia

Space is a current and future battleground without terrain, where invisible enemies conceivably could mount undetectable attacks to devastating effect if the right deterrent and defensive plans aren’t pursued now, the assistant defense secretary for global strategic affairs told a think tank audience on Sept. 17, 2013  Madelyn R. Creedon spoke to a Stimson Center gathering whose audience included analysts focused on the question of deterrence in space. The center released a publication this week titled “Anti-satellite Weapons, Deterrence and Sino-American Space Relations,” presenting a number of essays examining various perspectives on space deterrence.

Creedon noted that in Defense Department parlance, deterrence is “the prevention of action by the existence of a credible threat of unacceptable counteraction and/or the belief that the cost of action outweighs the perceived benefits.” In other words, she said, if deterrence is effective, an adversary has or believes he has more to lose than to gain by attacking.  Deterrence remains a core defense strategy for the United States, she added, and the nation’s nuclear deterrent is “still alive and well.”  Creedon acknowledged that one classic approach to considering space deterrence — that is, preventing potential enemies from attacking U.S. or partner satellites and other military or economic assets in space — is to try to apply lessons learned during the Cold War. Then, the United States and the Soviet Union kept an uneasy diplomatic truce and piled up enough nuclear weapons to guarantee mutually assured destruction.

But one flaw to comparing the two deterrent challenges, she said, is that an attack that disables a satellite, unlike one from a nuclear warhead that flattens a major city, doesn’t threaten a nation’s existence. Another is that the two superpowers spent decades constructing an elaborate, mirrored, deterrent Cold War architecture and protocols, while space is still, comparatively, “the Wild West.” A third is that an attack in space or cyberspace may rely on digital rather than conventional weapons, and so could occur without warning or even detection.

“If there is an attack against a space asset, it isn’t visible,” she said. “You can’t watch it on CNN, and unless you’re directly affected by the capability that the space assets provide, you’re probably completely oblivious that the attack happened.”

She said DOD is developing and implementing what safeguards it can implement in space using four mutually supportive elements to deter others from taking action against U.S. assets:

— Working to internationalize norms and establish a code of conduct to enhance stability;

— Building coalitions to enhance security;

— Adding resilience to U.S. space architectures; and

— Preparing for an attack on U.S. and allied space assets using defenses “not necessarily in space.”

“We believe this four-element approach … will bolster deterrence,” Creedon said.

The department is working with the State Department and international partners to define elements of good behavior in space, she said. “States must remain committed to enhance the welfare of humankind by cooperating with others to maintain the long-term sustainability, safety, security and stability of the outer-space environment,” she added.  Creedon said work is underway to build deterrent coalitions and increase space awareness. She said the “Five Eyes” nations, which include the United States, United Kingdom, Canada, Australia and New Zealand, are extending their intelligence cooperation to expand their collective space situational awareness

The United States is meanwhile working to lower the benefit to potential attackers by employing more satellites, participating in satellite constellations with other countries and purchasing payload space on commercial satellites when feasible.  Creedon said the U.S. approach to space deterrence is similar to its strategy in any domain: take “prudent preparations to survive, and to operate through, and, hopefully, prevail in any conflict.”

By Karen Parrish, Official Describes Evolution of Space Deterrence, American Forces Press Service, Sept. 19, 2013