Tag Archives: Nuclear Energy

India as the Exception: the Geopolitics of Nuclear Weapons

NSG-India

The United States, Britain and others have argued that nuclear-armed India should join the secretive 48-nation Nuclear Suppliers Group (NSG) – established in 1975 to ensure that civilian atomic trade is not diverted for military purposes.  But other NSG states have voiced doubt about accepting a country that built up a nuclear arsenal outside a 189-nation treaty set up four decades ago to prevent states from acquiring such weapons of mass destruction.

Days ahead of the June 26-27 NSG meeting in Buenos Aires, India said it was ratifying an agreement, a so-called Additional Protocol, with the International Atomic Energy Agency to expand oversight over its civilian nuclear programme.  The United States said this marked another “important step in bringing India into the international non-proliferation mainstream”. But some critics questioned the step’s significance, as it would not affect India’s nuclear weapons programme and sensitive atomic fuel activities.  They said the Indian agreement was a much weaker version of a deal most other IAEA members have, giving the U.N. watchdog wide inspection powers to make sure there are no covert nuclear activities in a country.  “India’s version of the Additional Protocol is a paper tiger,” said Daryl Kimball of the U.S.-based Arms Control Association, a research and advocacy group….

The diplomatic tussle centres on whether the emerging power should be allowed into a key forum deciding rules for civilian nuclear trade, even though it never joined the 1970 Non-Proliferation Treaty (NPT), under which it would have to give up its nuclear weapons…

India – Asia’s third-largest economy – would need the support of all NSG states to join the cartel that has a pivotal role in countering nuclear threats and proliferation.  If India eventually were to become a member, it would boost its standing as an atomic power. It would be the only member of the suppliers group that has not signed up to the NPT.

Supporters say it is better if the country is inside than outside the NSG as it is already an advanced nuclear energy power and will in future become a significant exporter as well.  Those who are sceptical argue it could erode the credibility of the NPT, which is a cornerstone of global nuclear disarmament efforts.

Diplomats have said that China and some others have been doubtful. Beijing’s reservations are believed to be influenced by its ties to its ally Pakistan, India’s rival, which has also tested atomic bombs and is also outside the NPT, analysts say.

Excerpts,Nuclear Suppliers Group to discuss ties with India,Reuters, Jun 24, 2014

Less Radioactive: the advantages of thorium reactors

MSR Reactor. image from wikipedia

Existing  nuclear reactors use uranium or plutonium—the stuff of bombs.. Thorium, though, is hard to turn into a bomb; not impossible, but sufficiently uninviting a prospect that America axed thorium research in the 1970s. It is also three or four times as abundant as uranium. In a world where nuclear energy was a primary goal of research, rather than a military spin-off, it would certainly look worthy of investigation. And it is, indeed, being investigated.

India has abundant thorium reserves, and the country’s nuclear-power programme, which is intended, eventually, to supply a quarter of the country’s electricity (up from 3% at the moment), plans to use these for fuel. This will take time. The Indira Gandhi Centre for Atomic Research already runs a small research reactor in Kalpakkam, Tamil Nadu, and the Bhabha Atomic Research Centre in Mumbai plans to follow this up with a thorium-powered heavy-water reactor that will, it hopes, be ready early next decade.

China’s thorium programme looks bigger. The Chinese Academy of Sciences claims the country now has “the world’s largest national effort on thorium”, employing a team of 430 scientists and engineers, a number planned to rise to 750 by 2015. This team, moreover, is headed by Jiang Mianheng, an engineering graduate of Drexel University in the United States who is the son of China’s former leader, Jiang Zemin (himself an engineer). Some may question whether Mr Jiang got his job strictly on merit. His appointment, though, does suggest the project has political clout. The team plan to fire up a prototype thorium reactor in 2015. Like India’s, this will use solid fuel. But by 2017 the Shanghai Institute of Applied Physics expects to have one that uses a trickier but better fuel, molten thorium fluoride…

One of the cleverest things about (Liquid Fluoride Thorium Reactors) LFTRs is that they work at atmospheric pressure. This changes the economics of nuclear power. In a light-water reactor, the type most commonly deployed at the moment, the cooling water is under extremely high pressure. As a consequence, light-water reactors need to be sheathed in steel pressure vessels and housed in fortress-like containment buildings in case their cooling systems fail and radioactive steam is released. An LFTR needs none of these.

Thorium is also easier to prepare than its rivals… By contrast thorium, once extracted from its ore, is reactor-ready…[T]horium reactors can run non-stop for years, unlike light-water reactors. These have to be shut down every 18 months to replace batches of fuel rods.  Thorium has other advantages, too. Even the waste products of LFTRs are less hazardous than those of a light-water reactor. There is less than a hundredth of the quantity and its radioactivity falls to safe levels within centuries, instead of the tens of millennia for light-water waste.

Paradoxically, though, given thorium’s history, it is the difficulty of weaponising thorium which many see (as it were) as its killer app in civil power stations. One or two 233U bombs were tested in the Nevada desert during the 1950s and, perhaps ominously, another was detonated by India in the late 1990s. But if the American experience is anything to go by, such bombs are temperamental and susceptible to premature detonation because the intense gamma radiation 233U produces fries the triggering circuitry and makes handling the weapons hazardous. The American effort was abandoned after the Nevada tests….. Rogue nations interested in an atom bomb are thus likely to leave thorium reactors well alone when there is so much poorly policed plutonium scattered around the world. So a technology abandoned because it could not be turned into weapons may now, in part for that very reason, be about to resurface.

Excerpts from Thorium reactors: Asgard’s fire, Economist,  April 12, at 78

Fukushima Nuclear Waste will Go Here

Okuma, Futaba and Nahara disposal locations Fukushima

Fukushima prefectural authorities have asked the Environment Ministry to reduce from three to two the number of sites it plans for the temporary storage of radioactive debris generated by the Fukushima No. 1 nuclear power plant disaster.  Fukushima Governor Yuhei Sato on Feb. 12 submitted a request to Environment Minister Nobuteru Ishihara and Takumi Nemoto, the minister in charge of post-quake reconstruction, asking them not to build a storage facility in the town of Naraha so that its residents can return home earlier.  Based on the request, Ishihara said the Environment Ministry will review the initial plan to erect facilities in Naraha, as well as the towns of Okuma and Futaba.

The central government intended to construct intermediate storage facilities in the three towns, all in Fukushima Prefecture, that are capable of storing 13.1 million, 12.4 million and 2.5 million cubic meters of debris, respectively. The smallest of the sites was to be built in Naraha.

However, Sato argued in his request that if collected debris were burned to reduce its volume, the two larger sites could accommodate all the waste.  The governor also proposed that the ministry build a plant to process the ash from debris with radioactive values at 100,000 becquerels per kilogram or lower in Naraha instead…Elsewhere though, many other municipalities in the prefecture have urged the prefectural government to quickly facilitate the building of those facilities because radioactive soil and other associated waste generated by the Fukushima nuclear disaster are filling up temporary storage sites throughout the prefecture. The Environment Ministry estimates that 1.6 million cubic meters of debris was stored across Fukushima Prefecture as of the end of last October.

Excerpt, Fukushima seeks limit on radioactive waste disposal sites, THE ASAHI SHIMBUN, Feb. 13, 2014

Fukushima Nuclear Waste: the storage plan

tepco logo

The Japan’s Environment Ministry officially announced on December 14, 2013 that the government aims to buy 19 sq. km of land around the Fukushima No. 1 nuclear complex to build facilities for the long-term storage of radioactive and other waste churned up in decontamination work…Under the plan, the government will build storage and volume reduction facilities on land bought around the Fukushima No. 1 plant host towns of Futaba and Okuma, as well as a small facility in Naraha, while utilizing an existing disposal site in Tomioka. Those two towns co-host the Fukushima No. 2 power station.Up to 28 million cu. meters of waste could be stored in the envisaged facilities, whose total cost is estimated at about ¥1 trillion, the officials said.  Providing local consent is secured, the government will take legislative action to ensure that the waste’s final disposal will take place outside the prefecture within 30 years from the start of storage, the ministry said.  With the dim prospects of building interim storage facilities delaying decontamination of areas affected by the March 2011 nuclear disaster, the government hopes to start using the planned facilities in January 2015.  Desperate to begin construction in April, the government will seek ¥100 billion in the fiscal 2014 budget for related expenses, including the cost of acquiring the land, ministry officials said.

Ministry unveils plan to buy 19 sq. km of land around Fukushima No. 1 for waste storage, Japan Times, Dec. 14, 2013

Brazil and France Collaborate on Angra 3 Nuclear Plant

Angra 3 image (upon completion)

Eletrobras Eletronuclear has awarded a contract to Areva to complete the construction of the Angra 3 nuclear reactor, located in Rio de Janeiro, Brazil.  Under the €1.25bn contract, the company will supply engineering services and components, as well as the digital instrumentation and control system for the reactor.  Additional responsibilities include provision of assistance in the supervision of the installation works and the commissioning activities.

Areva president and CEO Luc Oursel said the contract continues the company’s partnership with Eletrobras that started with the construction and the supply of reactor services for the Angra 2 reactor.  ”The completion of Angra 3 confirms Brazil’s engagement in an ambitious nuclear program and illustrates the relevance of this energy source as a solution for sustainable economic development,” Oursel added.

Initiated in 2006, the construction of the 1,405 MWe Angra 3 pressurized water reactor is expected to help the Brazilian government meet the country’s increasing energy demand, and balance the energy mix.  Besides featuring the latest enhancements made to currently operational reactors, especially in terms of safety, the Angra 3 design also responds to the guidelines of the International Atomic Energy Agency (IAEA) and the Brazilian nuclear safety authority’s post-Fukushima standards.  Connected to the grid in 1985 and 2001, the Angra 1 and Angra 2 reactors have an output of 640Mwe and 1,350MWe, respectively.

Areva to support third Angra 3 nuclear reactor construction, EBR Staff Write, Nov. 8, 2013

The Lure of Impossible: Choking Uranium Markets

The Rössing Uranium Mine in Namibia

Making nuclear weapons requires access to materials—highly enriched uranium or plutonium—that do not exist in nature in a weapons-usable form.   The most important suppliers of nuclear technology have recently agreed guidelines to restrict access to the most sensitive industrial items, in the framework of the Nuclear Suppliers Group (NSG). Nevertheless, the number of countries proficient in these industrial processes has increased over time, and it is now questionable whether a strategy based on close monitoring of technology ‘choke points’ is by itself a reliable barrier to nuclear proliferation.  Time to tighten regulation of the uranium market?

Not all the states that have developed a complex nuclear fuel cycle have naturally abundant uranium. This has created a global market for uranium that is relatively free—particularly compared with the market for sensitive technologies….

Many African states have experienced increased investment in their uranium extractive sectors in recent years. Many, though not all, have signed and ratified the 1996 African Nuclear Weapon Free Zone (Pelindaba) Treaty, which entered into force in 2009. Furthermore, in recent years, the relevant countries have often worked with the IAEA to introduce an Additional Protocol to their safeguards agreement with the agency…

One proliferation risk inherent in the current system is that inadequate or falsified information connected to what appear to be legitimate transactions will facilitate uranium acquisition by countries that the producer country would not wish to supply….

A second risk is that uranium ore concentrate (UOC) is diverted, either from the site where it was processed or during transportation, so the legitimate owners no longer have control over it. UOC is usually produced at facilities close to mines—often at the mining site itself—to avoid the cost and inconvenience of transporting large quantities of very heavy ore in raw form to a processing plant.,,,UOC is usually packed into steel drums that are loaded into standard shipping containers for onward movement by road, rail or sea for further processing. The loss of custody over relatively small quantities of UOC represents a serious risk if diversion takes place regularly. The loss of even one full standard container during transport would be a serious proliferation risk by itself. There is thus a need for physical protection of the ore concentrate to reduce the risk of diversion at these stages.

A third risk is that some uranium extraction activity is not covered by the existing rules. For example, uranium extraction can be a side activity connected to gold mining or the production of phosphates. Regulations should cover all activities that could lead to uranium extraction, not only those where uranium extraction is the main stated objective.

Restricting access to natural uranium could be an important aspect of the global efforts to obstruct the spread of nuclear weapons…

Excerpts, from  Ian Anthony and Lina Grip, The global market in natural uranium—from proliferation risk to non-proliferation opportunity, SIPRI, Apr. 13, 2013

The Costs of Covert Operations in Pursuit of Regime Change in Iran

USB_flash_drive.  Image from wikipedia

Washington believed that covert action against Iran’s nuclear facilities would be more effective and less risky than an all-out war… In fact, Mark Fitzpatrick, former deputy assistant secretary of state for non-proliferation said: “Industrial sabotage is a way to stop the programme, without military action, without fingerprints on the operation, and really, it is ideal, if it works.”The US has a long history of covert operations in Iran, beginning in 1953 with the CIA orchestrated coup d’état that toppled the popularly elected Iranian prime minister Mohammad Mossadegh and installed a dictator, Reza Shah. The US has reorganised its covert operations after the collapse of the shah in 1979…

In January 2011, it was revealed that the Stuxnet cyber-attack, an American-Israeli project to sabotage the Iranian nuclear programme, has been accelerated since President Barack Obama first took office. Referring to comments made by the head of Mossad, then US secretary of state Hillary Clinton confirmed the damages inflicted on Iran’s nuclear programme have been achieved through a combination of “sabotage and sanctions”.

Meanwhile, several Iranian nuclear scientists were assassinated. The New York Times reported that Mossad orchestrated the killings while Iran claimed the attacks were part of a covert campaign by the US, UK and Israel to sabotage its nuclear programme….

There are at least 10 major repercussions arising from the US, West and Israeli policy of launching covert war and cyber-attacks against Iranian nuclear facilities and scientists.

First, cyber war is a violation of international law. According to the UN Charter, the use of force is allowed only with the approval of the UN Security Council in self-defence and in response to an attack by another country. A Nato-commissioned international group of researchers, concluded that the 2009 Stuxnet attack on Iran’s nuclear facilities constituted “an act of force”, noting that the cyber-attack has been a violation of international law.Second, the US covert operations are a serious violation of the Algiers Accord. The 1981 Algiers Accords agreed upon between Iran and the US clearly stated that “it is and from now on will be the policy of the US not to intervene, directly or indirectly, politically or militarily, in Iran’s internal affairs”.

Third, the cyber war has propelled Tehran to become more determined in its nuclear efforts and has made major advancement. According to reports by the International Atomic Energy Agency (IAEA), prior to covert operations targeting the nuclear programme, Iran had one uranium enrichment site, a pilot plant of 164 centrifuges enriching uranium at a level of 3.5 per cent, first generation of centrifuges and approximately 100 kg stockpile of enriched uranium.Today, it has two enrichment sites with roughly 12,000 centrifuges, can enrich uranium up to 20 per cent, possesses a new generation of centrifuges and has amassed a stockpile of more than 8,000kg of enriched uranium.

Fourth, the strategy pursued has constituted a declaration of war on Iran, and a first strike. Stuxnet cyber-attack did cause harm to Iran’s nuclear programme, therefore it can be considered the first unattributed act of war against Iran, a dangerous prelude toward a broader war.

Fifth… [s]uch short-sighted policies thicken the wall of mistrust, further complicating US-Iran rapprochement and confidence-building measures.

Sixth, Iran would consider taking retaliatory measures by launching cyber-counter-attacks against facilities in Israel, the West and specifically the US…

Seventh, Iran is building a formidable domestic capacity countering and responding to western cyber-warfare. Following the Stuxnet attack, Iran’s Supreme Leader issued a directive to establish Iran’s cyber army that is both offensive and defensive. Today, the Islamic Revolutionary Guards Corps (IRGC) has the fourth biggest cyber army in the world. Israel’s Institute for National Security Studies (INSS) acknowledged that IRGC is one of the most advanced nations in the field of cyberspace warfare.

Eighth, Iran now has concluded that information gathered by IAEA inspectors has been used to create computer viruses, facilitate sabotage against its nuclear programme and the assassinations of nuclear scientists. Iranian nuclear energy chief stated that the UN nuclear watchdog [IAEA] has been infiltrated by “terrorists and saboteurs.” Such conclusions have not only discredited the UN Nuclear Watchdog but have pushed Iran to limit its technical and legal cooperation with the IAEA to address outstanding concerns and questions.

Ninth, worsening Iranians siege mentality by covert actions and violations of the country’s territorial sovereignty could strengthen the radicals in Tehran to double down on acquiring nuclear weapons. Iran could be pondering now the reality that the US is not waging a covert war on North Korea (because it possesses a nuclear bomb), Muammar Gaddafi lost his grip on power in Libya after ceding his nuclear programme, and Iraq and Afghanistan were invaded (because they had no nuclear weapon).

Tenth, the combination of cyber-attacks, industrial sabotage and assassination of scientists has turned public opinion within Iran against western interference within the country…[P]rovocative western measures have convinced the Iranian government that the main issue is not the nuclear programme but rather regime change.

Excerpts from  Seyed Hossein Mousavian, Ten consequences of US covert war against Iran, Gulf News, May 11, 2013