Tag Archives: nuclear non-proliferation treaty

Putting the Genie Back in the Bottle: Nuclear Weapons

 More details Preparation for an underground nuclear test at the Nevada Test Site in the 1990s. Image from wikipedia

Australia*** has attempted to derail a ban on nuclear weapons at a UN meeting on disarmament, by single-handedly forcing a vote on a report that had been expected to pass unanimously.The report, which recommended negotiations begin in 2017 to ban nuclear weapons, was eventually passed by 68 votes to 22.

Moves towards a ban have been pursued because many saw little progress under the existing non-proliferation treaty, which obliges the five declared nuclear states to “pursue negotiations in good faith” towards “cessation of the nuclear arms race … and nuclear disarmament”.

The proposal recommended a conference be held next year to negotiate “a legally binding instrument to prohibit nuclear weapons, leading towards their total elimination”.,…Anti-nuclear campaigners involved in the process expected the report would pass without objection. But Australia surprised observers by objecting and forcing a vote…

in 2015, documents obtained under Freedom of Information revealed Australia opposed the ban on nuclear weapons, since it believed it relied on US nuclear weapons as a deterrent.  “As long as the threat of nuclear attack or coercion exists, and countries like the DPRK [North Korea] seek these weapons and threaten others, Australia and many other countries will continue to rely on US extended nuclear deterrence,” said one of the briefing notes for government ministers.

The documents revealed however that Australia and the US were worried about the momentum gathering behind the Austrian-led push for a ban nuclear weapons, which diplomats said was “fast becoming a galvanising focus for those pushing the ban treaty option”.

Excerpts from Australia attempts to derail UN plan to ban nuclear weapons, Guardian, Aug. 20, 2017

***The following countries agreed with Australia: Belgium, Bulgaria, Canada, Croatia, Estonia, Finland, Germany, Greece, Hungary, Italy, Japan, Latvia, Lithuania, Netherlands, Norway, Poland, Portugal, Republic of Korea, Romania, Slovakia, Slovenia, Spain and Turkey

These countries want a legal instrument to ban nuclear weapons ASAP: Afghanistan, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Austria, Bahamas, Bahrain, Barbados, Belize, Benin, Bolivia, Botswana, Brazil, Brunei, Burkina Faso, Burundi, Cabo Verde, Cambodia, Central African Republic, Chad, Chile, Colombia, Comoros, Congo, Cook Islands, Costa Rica, Côte d’Ivoire, Cuba, Cyprus, Democratic Republic of the Congo, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Eritrea, Ethiopia, Fiji, Gambia, Ghana, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Indonesia, Iraq, Ireland, Islamic Republic of Iran, Jamaica, Jordan, Kazakhstan, Kenya, Kiribati, Kuwait, Kyrgyzstan, Lebanon, Lesotho, Liberia, Libya, Liechtenstein,Madagascar, Malawi, Malaysia, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Mongolia, Namibia, Nauru, Nicaragua, Niger, Nigeria, Oman, Niue, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Qatar, Saint Kitts and Nevis, Saint Lucia. Saint Vincent and the Grenadines, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Somalia, South Africa, Sri Lanka, State of Palestine, Sudan, Suriname, Swaziland, Tajikistan, The former Yugoslav Republic of Macedonia, Timor Leste, Togo, Trinidad and Tobago, Tunisia, Tuvalu, Uganda, United Arab Emirates, United Republic of Tanzania, Uruguay, Vanuatu, Venezuela, Viet Nam, Yemen, Zambia, Zimbabwe

See also Model Nuclear Weapons Convention

See the Legal Gap

How Lasers Facilitate Nuclear Weapons Production

Different lazer sizes. The neodymium glass lasers (bottom) are used for nuclear weapons research.

 Using spinning gas centrifuges to enrich fuel for nuclear bombs requires a structure the size of a department store, and enough electricity for some 10,000 homes. An alternative method being developed would make the search far more difficult...The alternative is to zap the uranium vapour with a powerful infra-red beam from a laser…At least 27 countries, by one tally, have worked on laser enrichment since the 1970s. Most gave up, largely because production batches were tiny. Now, however, two firms say that they have learned how to scale up the process.

Jeffrey Eerkens of Neutrek, a Californian research firm, says its laser process requires around half the space and electricity that centrifuges need. A competing laser method is offered by Global Laser Enrichment (GLE), a consortium of General Electric, Hitachi and Cameco, a Canadian uranium producer. It, too, requires less space. In 2012 GLE was awarded a licence to build a facility in North Carolina for the commercial production of reactor fuel.

America has classified the technology, but that may not stop it spreading. The most important bit of laser-enrichment know-how has already leaked, says Charles Ferguson, head of the Federation of American Scientists—namely, that companies now consider it to be practical. This will reinvigorate efforts by other countries to develop the technology for themselves….

Non-proliferation optimists think laser-enrichment might not work as well as advertised, because GLE has still not begun commercial production. But this may be only temporary, because the company says the price of enriched uranium is too low to justify completing the project. A regime keen for a more discreet path to the bomb would not bother with such considerations.

Monitoring nuclear weapons: Lasering the fuel, Economist Technology Quarterly,  Sept. 5, 2015

The Race for Nuclear Weapons Non-Proliferation

hydrophone. image from CTBTO

As nuclear blasts go, North Korea’s first test in 2006 was small. The detonation of an underground device produced an explosive force well below one kiloton (less than a tenth of the size of the bomb dropped on Hiroshima in 1945). Even so, the vibrations it caused were recorded half a world away in the centre of Africa. Advances in the sensitivity of seismic sensors and monitoring software are now good enough to distinguish between a distant nuclear detonation and, say, a building being demolished with conventional explosives, says Lassina Zerbo, head of the Preparatory Commission for the Comprehensive Test-Ban-Treaty Organisation (CTBTO), the international organisation that seeks to enforce the agreement ratified, so far, by 163 nations.

The CTBTO operates 170 seismic stations worldwide, 11 underwater hydroacoustic centres detecting sound waves in the oceans, 60 listening stations for atmospheric infrasound (low-frequency acoustic waves that can travel long distances) and 96 labs and radionuclide-sampling facilities. More sensors are being installed. Crucially, however, the optimal number for global coverage was recently reached. It is now impossible, reckons Dr Zerbo, to test even a small nuclear weapon in secret anywhere on Earth. And on top of that, the United States Air Force runs a detection network that includes satellites that can spot nuclear-weapons tests.

It is better, though, to discover a secret weapons programme before testing. Once a country has a nuclear bomb or two, there is not much other governments can do to stop it from making more, says Ilan Goldenberg, a former head of the Iran team at the Pentagon. Plenty of states want such capabilities. The Defence Science Board, an advisory body to the Pentagon, concluded in a report last year that the number of countries that might seek nuclear weapons is higher now than at any time since the cold war. Those states include Saudi Arabia and other Sunni-Arab rivals of Iran, which in July, after long and tortuous negotiations, signed a nuclear deal with America and other nations to restrict its nuclear activities, and to allow enhanced monitoring and inspection of its facilities.

As the technologies to unearth work on clandestine nuclear weapons become more diverse and more powerful, however, the odds of being detected are improving. Innovation is benefiting detection capabilities, says Ramesh Thakur, a former UN assistant secretary-general. The products under development range from spy software that sifts through electronic communications and financial transactions to new scanners that can detect even heavily shielded nuclear material….

Software used for this type of analysis include i2 Analyst’s Notebook from IBM, Palantir from a Californian firm of the same name, and ORA, which was developed with Pentagon funds at Carnegie Mellon University in Pennsylvania. ORA has crunched data on more than 30,000 nuclear experts’ work and institutional affiliations, research collaborations and academic publications, says Kathleen Carley, who leads the ORA work at Carnegie Mellon. Changes, such as a halt in publishing, can tell stories: scientists recruited into a weapons programme typically cannot publish freely. Greater insights appear when classified or publicly unavailable information is sifted too. Credit-card transactions can reveal that, say, a disproportionate number of doctors specialising in radiation poisoning are moving to the same area.

The software uses combinatorial mathematics, the analysis of combinations of discrete items, to score individuals on criteria including “centrality” (a person’s importance), “between-ness” (their access to others), and “degree” (the number of people they interact with). Network members with high between-ness and low degree tend to be central figures: they have access to lots of people, but like many senior figures may not interact with that many. Their removal messes things up for everybody. Five or more Iranian nuclear scientists assassinated in recent years—by Israel’s Mossad, some suspect—were no doubt chosen with help from such software, says Thomas Reed, a former secretary of the United States Air Force and co-author of “The Nuclear Express”, a history of proliferation.

Importantly, the software can also evaluate objects that might play a role in a nuclear programme. This is easier than it sounds, says a former analyst (who asked not to be named) at the Pentagon’s Central Command in Tampa, Florida. Ingredients for homemade conventional bombs and even biological weapons are available from many sources, but building nukes requires rare kit. The software can reveal a manageable number of “chokepoints” to monitor closely, he says. These include links, for instance, between the few firms that produce special ceramic composites for centrifuges and the handful of companies that process the material.

A number of countries, including Japan and Russia, use network analysis. Japan’s intelligence apparatus does so with help from the Ministry of Economy, Trade and Industry, which assists in deciding which “dual use” items that might have both peaceful and military purposes should not be exported. Such work is tricky, says a member of the advisory board (who also asked not to be named) to the security council of the Russian Federation, a body chaired by Vladimir Putin. Individual items might seem innocent enough, he says, and things can be mislabelled.

Data sources are diverse, so the work takes time. Intelligence often coalesces after a ship has left port, so foreign authorities are sometimes asked to board and search, says Rose Gottemoeller, undersecretary for arms control at America’s State Department. The speed of analysis is increasing, however. Software that converts phone conversations into computer-readable text has been “extremely helpful”, says John Carlson, a former head of the Australian foreign ministry’s Safeguards and Non-Proliferation Office.

Would-be nuclear states can also reduce their networks. North Korea helped to keep its centrifuge facility secret by using mostly black-market or domestically manufactured components. Iran is also indigenising its nuclear programme, which undermines what network analysis can reveal, says Alexander Montgomery, a political scientist at Reed College in Portland, Oregon. Iran mines uranium domestically and has produced centrifuge rotors with carbon fibre, instead of importing special maraging steel which is usually required.

A big computer system to make sense of all this would help, says Miriam John, vice-chairman of the Pentagon’s Threat Reduction Advisory Committee. Which is why the Pentagon is building one, called Constellation. Dr John describes it as a “fusion engine” that merges all sorts of data. For instance, computers can comb through years of satellite photos and infra-red readings of buildings to detect changes that might reveal nuclear facilities. Constellation aims to increase the value of such nuggets of information by joining them with myriad other findings. For example, the whereabouts of nuclear engineers who have stopped teaching before retirement age become more interesting if those people now happen to live within commuting distance of a suspect building.

Yet photographs and temperature readings taken from satellites, even in low Earth orbit, only reveal so much. With help from North Korea, Syria disguised construction of a nuclear reactor by assembling it inside a building in which the floor had been lowered. From the outside the roof line appeared to be too low to house such a facility. To sidestep the need for a cooling tower, water pipes ran underground to a reservoir near a river. The concealment was so good the site was discovered not with remote sensing but only thanks to human intelligence, says Dr Tobey, the former National Security Council official. (Israel bombed the building in 2007 before it could be completed.)

Some chemical emissions, such as traces of hydrofluoric acid and fluorine, can escape from even well-built enrichment facilities and, with certain sensors, have been detectable from space for about a decade, says Mr Carlson, the Australian expert. But detecting signs of enrichment via radiation emissions requires using different sorts of devices and getting much closer to suspected sources.

The “beauty” of neutrons and alpha, beta and gamma radiation, is that the energy levels involved also reveal if the source is fit for a weapon, says Kai Vetter, a physicist at the University of California, Berkeley. But air absorbs enough radiation from uranium and plutonium bomb fuel to render today’s detectors mostly useless unless they are placed just a few dozen metres away. (Radiological material for a “dirty bomb” made with conventional explosives is detectable much farther away.) Lead shielding makes detection even harder. Not one of the more than 20 confirmed cases of trafficking in bomb-usable uranium or plutonium has been discovered by a detector’s alarm, says Elena Sokova, head of the Vienna Centre for Disarmament and Non-Proliferation, a think-tank.

Ground-based detectors are becoming more sensitive….. Detectors still need to be close to whatever it is they are monitoring, which mostly restricts their use to transport nodes, such as ports and borders. The range the detectors operate over might stretch to about 100 metres in a decade or so, but this depends on uncertain advances in “active interrogation”—the bombardment of an object with high-energy neutrons or protons to produce other particles which are easier to pick up. One problem is that such detectors might harm stowaways hiding in cargo.

That risk has now been solved, claims Decision Sciences, a Californian company spun out of the Los Alamos National Laboratory in America. It uses 16,000 aluminium tubes containing a secret gas to record the trajectory of muons. These are charged particles created naturally in the atmosphere and which pass harmlessly through people and anything else in their path. However, materials deflect their path in different ways. By measuring their change in trajectory, a computer can identify, in just 90 seconds, plutonium and uranium as well as “drugs, tobacco, explosives, alcohol, people, fill in the blank”, says Jay Cohen, the company’s chief operating officer and a former chief of research for the United States Navy. The ability to unearth common contraband will make the machine’s $5m price tag more palatable for border officials. A prototype is being tested in Freeport, Bahamas.

Other groups are also working on muon detectors, some using technology developed for particle physics experiments at the Large Hadron Collider in Switzerland. Another approach involves detecting neutrinos, which are produced by the sun and nuclear reactors, and seeing how they interact with other forms of matter. The NNSA and other organisations are backing the construction of a prototype device called WATCHMAN in an old salt mine (to shield it from cosmic rays and other interference) in Painesville, Ohio. It will be used to detect neutrinos from limited plutonium production at a nuclear power station 13km away. Such a system might have a 1,000km range, eventually. But even that means it would require a friendly neighbour to house such a facility on the borders of a country being monitored.

Once nuclear facilities have been discovered, declared or made available for inspection as part of a deal, like that signed with Iran, the job of checking what is going on falls to experts from the UN’s International Atomic Energy Agency (IAEA). The equipment available to them is improving, too. The Canadian Nuclear Safety Commission has built a prototype hand-held spectrometer for determining if traces of uranium collected on a cotton swab and blasted with a laser emit a spectral signature that reveals enrichment beyond that allowed for generating electricity. Within three years it will provide an unprecedented ability to assess enrichment without shipping samples back to a lab, says Raoul Awad, director-general of security and safeguards at the commission.

Laser scanning can also reveal other signs of enrichment. A decade ago inspectors began scanning intricate centrifuge piping with surveying lasers. A change between visits can reveal any reconfiguration of the sort necessary for the higher levels of enrichment needed for bombmaking. Secret underground facilities might also be found by wheeling around new versions of ground-penetrating radar.

The remote monitoring of sites made available to inspectors is also getting better. Cameras used to record on videotape, which was prone to breaking—sometimes after less than three months’ use, says Julian Whichello, a former head of the IAEA’s surveillance unit. Today’s digital cameras last longer and they can be programmed to take additional pictures if any movement is detected or certain equipment is touched. Images are encrypted and stamped with sequential codes. If technicians at a monitored facility delete any pictures, the trickery will be noticed by software and the inspectors informed.

Such technology, however, only goes so far. The IAEA cannot inspect computers and countries can veto the use of some equipment. It does seem that inspectors sent to Iran will get access to Parchin, a site near Tehran where intelligence agencies say tests related to nuclear-weapons making took place. (Iran denies it has a military programme.) But even the best tech wizardry can only reveal so much when buildings have been demolished and earth moved, as in Parchin.

Could nuclear weapons be built in secret today? …. A senior American State Department counter-proliferation official (whose asked to remain anonymous), however, says that it is not impossible…Companies, including a General Electric consortium, are making progress enriching uranium with lasers . If this becomes practical, some worry that it might be possible to make the fuel for a nuclear bomb in smaller facilities with less fancy kit than centrifuges

Monitoring nuclear weapons: The nuke detectives, Economist Technology Quarterly, Sept. 5, 2015, at 10

Why Nuclear Weapons are Here to Stay

 More details A Soviet inspector examines a BGM-109G Gryphon ground-launched cruise missile in 1988 prior to its destruction. Image from wikipedia

[D]espite the establishment in 2009 of [a process to] discuss multilateral disarmament, not much has happened. The main reason is the chilling of relations between Russia and the West, which predated Russia’s annexation of Crimea. An offer by Mr Obama in 2013 of new negotiations to reduce each side’s stock of warheads by a third was met with stony silence.

More recently Russia has, according to America, violated both the 1987 Intermediate Nuclear Forces treaty, by testing a banned missile, and the Budapest Memorandum of 1994 that guaranteed Ukraine’s security when it gave up the nuclear weapons it had inherited on the break-up of the Soviet Union. The Russians are also refusing to attend next year’s Nuclear Security Summit, a meeting to prevent fissile material falling into the wrong hands.

Without further cuts in American and Russian nuclear forces (which account for more than 90% of the world’s nuclear weapons), China, the most opaque of the P5 power (US, UK, Russia, China, France), will block attempts to get multilateral disarmament talks going. However, Rose Gottemoeller, America’s under-secretary of state for arms control, praises China for its leading role in producing a common glossary of nuclear terminology. This may not sound much, but it is seen within the P5 as essential for future negotiations.

Ms Gottemoeller is also keen to stress that, despite the Russian impasse, America has tried to meet its obligations. It is eliminating “excess” warheads at the rate of almost one a day and closing down old bits of nuclear infrastructure. …It is doubtful whether these modest, incremental efforts will cut much ice with the Humanitarian Impacts of Nuclear Weapons Initiative, a movement supported by civil-society groups and championed by Austria, Norway and Mexico. Faced with what they see as foot-dragging by the P5 (which are modernising their nuclear forces to maintain their long-term effectiveness), the initiative’s backers, some of which want to make nuclear weapons illegal, may question whether working through the NPT serves any purpose…

Another source of friction is the failure to hold the conference on creating a WMD-free zone in the Middle East that was promised in 2010. Israel,…insists that regional security arrangements must precede any talks on disarmament, whereas Egypt says the first step is for Israel to accede to the NPT—a non-starter.

Excerpts from Nuclear weapons: Fractious, divided but still essential, Economist, May 2, 2015, at 54

Marshall Islands against Nine Nuclear-Armed States

Operation Crossroads. Aerial view of the Able mushroom cloud rising from the lagoon with the Bikini Island visible in the background. The cloud carried the radioactive contaminants into the stratosphere.  Image from wikipedia

On April 24, 2014, the Republic of the Marshall Islands (RMI) filed applications in the International Court of Justice against the nine nuclear-armed states, United States, United Kingdom, France, Russia, China, India, Pakistan, Israel, and North Korea.  The RMI also filed a companion case against the United States in U.S. federal court in San Francisco….

Three of the nine states possessing nuclear arsenals, the UK, India, and Pakistan, have accepted the compulsory jurisdiction of the Court when the opposing state has done so, as the Marshall Islands has. The cases are proceeding as to those states, and developments can be followed on the ICJ website, http://www.icj-cij.org.  As to the other six states, RMI is calling on them to accept the jurisdiction of the Court in these cases and to explain to the Court their positions regarding the nuclear disarmament obligations. However, China has already notified the Court that it declines to accept the Court’s jurisdiction in this matter.

The claims in the ICJ cases are for:

1)      breach of the obligation to pursue in good faith negotiations leading to nuclear disarmament, by refusing to commence multilateral negotiations to that end and/or by implementing policies contrary to the objective of nuclear disarmament;

2)      breach of the obligation to pursue negotiations in good faith on cessation of the nuclear arms race at an early date;

3)      breach of the obligation to perform the above obligations in good faith, by planning for retention of nuclear forces for decades into the future;

4)      failure to perform obligations relating to nuclear disarmament and cessation of the nuclear arms race in good faith by effectively preventing the great majority of non-nuclear weapon states from fulfilling their part of those obligations.

For the Nuclear Non-Proliferation Treaty (NPT) nuclear-weapon states, the U.S., UK, France, Russia, and China, the claims are made under both the NPT and customary international law. For the four states possessing nuclear arsenals outside the NPT, India, Pakistan, Israel, and North Korea, the claims are made under customary international law only. The customary obligations are based on widespread and representative participation of states in the NPT and the long history of United Nations resolutions on nuclear disarmament, and reflect as well the incompatibility of use of nuclear weapons with international law.

Hearings on preliminary issues – whether the cases are suitable for decision by the Court – probably will take place by late 2015 or early 2016. Proceedings on the merits could take another two or three years.

Excepts from The Marshall Islands’ Nuclear Zero Cases in the World Court:. Background and Current Status, Lawyers Committee on Nuclear Policy/November 2014

The Love for Nuclear Energy: Saudi Arabia

Iran and Saudi Arabia on map. Image from wikipedia

…[T]e government of Saudi Arabia is feeling anxiety over the evident progress in nuclear talks between the United States and Iran. Indeed, as Riyadh’s regional rival moves closer to receiving international recognition for its nuclear program, the kingdom’s own nuclear aspirations seem to have stalled completely: a proposed U.S.-Saudi nuclear agreement has been at a standstill for six years. And the stalled talks are only one of several issues that have hurt the relationship between Riyadh and Washington in recent years.

The U.S.-Saudi nuclear talks were initiated in 2008, when then Secretary of State Condoleezza Rice and her Saudi counterpart, Prince Saud al-Faisal, signed a Memorandum of Understanding on Nuclear Energy Cooperation. At the time, many observers expected that the two countries were forging a new pillar for their 80-year-long strategic partnership. Indeed, Saudi Arabia soon announced its intention to build 16 nuclear power plants (at an estimated cost of $112 billion), which would have made it the world’s largest civilian nuclear program and generated tens of thousands of high-paying jobs for the kingdom’s growing population. Riyadh has justified its nuclear ambitions by pointing to the country’s dependence on oil and gas exports, which constitute 80 percent of national revenue; if Saudi Arabia could meet its own growing energy demands through nuclear energy, it wouldn’t have to curtail its sale of oil on the international market.

But before Saudi Arabia enjoys its first watt of nuclear energy, it needs to find partners who are willing to help build its nuclear infrastructure—and at the moment, the United States doesn’t seem willing to play that role. Washington has said that it would first need to reach an agreement with Riyadh on adherence to the Atomic Energy Act of 1954, a U.S. law that regulates nuclear commerce—and those efforts have stalled over the question of whether Saudi Arabia would be subject to the so-called Gold Standard provision that would proscribe Riyadh from enriching uranium or reprocessing plutonium.

Riyadh is unsurprisingly incensed at any suggestion that it wouldn’t be accorded the same right to enrich uranium that the United States effectively granted to Iran under the interim agreement between those two countries. Sources familiar with the negotiations say that Riyadh has argued that the Gold Standard represents an unacceptable infringement on its national sovereignty, emphasizing that the Nuclear Non-Proliferation Treaty, of which Saudi Arabia is a signatory, stipulates that countries have a right to develop peaceful nuclear energy.

The White House has so far seemed reluctant to offer any compromise….Complicating matters is the fact that Israel is likely to oppose any nuclear deal with Saudi Arabia that doesn’t adhere to the Gold Standard and will pressure its allies in Washington to do the same. (Israel tacitly approved the 2009 nuclear deal between the United States and the UAE, which was compliant with the Gold Standard.)

Saudi Arabia, should it fail to reach an understanding with Washington, might instead choose to partner with either France or Russia to develop its nuclear program. Last January, during a state visit by French President François Hollande to Riyadh, the French company Areva, the world’s largest nuclear firm, signed a Me moandums of Understanding with five Saudi companies that aim to develop the industrial and technical skills of local companies. Similarly, the CEO of Russia’s Rosatom, Sergei Kiriyenko, announced in July that Russia and Saudi Arabia expect to sign an agreement on civilian nuclear cooperation later this year. If Saudi Arabia follows through on these agreements, it would be to the detriment of U.S. companies—and, perhaps, the broader U.S.-Saudi strategic partnership.

At present, a compromise between Saudi Arabia and the United States seems unlikely…. [But] One promising precedent is the U.S.-Vietnam nuclear agreement of 2014, which allowed Hanoi to obtain any nuclear reactor fuel that it needs for its reactors from the international market, rather than produce the material itself—a model that was dubbed the Silver Standard. This arrangement would likely be acceptable to Riyadh, as it is consistent with the agreement that Rice and Faisal signed in 2008. It’s unclear, however, whether it would be acceptable to Congress. U.S. politicians who claim to fear “Saudi nukes”—or the prospect that Riyadh’s nuclear program could fall into the hands of Islamist extremists—are unlikely to accept anything short of the Gold Standard.

Excerpt, By Sigurd Neubauer,Saudi Arabia’s Nuclear Envy, Foreign Affairs, Washington Should Help Riyadh Keep Up With Tehran

Secrecy at the International Atomic Energy Agency

iaea, headquarters vienna

The IAEA [International Atomic Energy Agency], which is charged with both promoting the peaceful use of nuclear power and controlling fuel that could be used in weapons, is holding its quadrennial safeguards meeting behind closed doors for the first time in at least 12 years this week in Vienna. The agency also decided to withdraw information about nuclear projects that have led to proliferation risks.

The IAEA restricted access to the symposium [Linking, Implementation, Safety, Nuclear, Safeguards, Atomic Energy, Technology, Science, Energy, Chemistry, Physics] held between October 20 and October 24, 2014, so participants aren’t “inhibited,” spokeswoman Gill Tudor said in an e-mail while noting that the opening and closing ceremonies will be public. Information about technical cooperation, which has been progressively restricted since 2012, will be made available again in the “coming weeks,” IAEA public-information director Serge Gas said in an e-mail….

To be sure, some IAEA members such as Iran would like to see the agency impose even greater controls over information. President Hassan Rouhani’s government asked the IAEA in a Sept. 19 open letter to investigate leaks of confidential data that it said could violate the interim agreement it signed with world powers last year.

Iran’s stance shows the agency is guilty of a double failure, according to Tariq Rauf, a former IAEA official who is now a director at the Stockholm International Peace Research Institute. While the public is increasingly excluded from the scientific debate that shapes policy decisions, “the agency routinely allows secret information about nuclear programs to be given to select Western countries, which then leak it out,” he said.… The U.S. Government Accountability Office said in a 2011 report it’s wary about IAEA help to Cuba, Iran, Sudan and Syria.  Past IAEA technical assistance probably wound up helping Pakistan discover and mine the uranium that went into its nuclear weapons. In Syria, the agency developed a uranium-ore production facility that later drew scrutiny after the Middle East country allegedly built a secret reactor…

Scientists at this week’s meeting will explain how they can use rooftop sensors to sniff out the gases given off during plutonium production, according to the meeting agenda. Others will look at new ways to analyze satellite imagery, more sensitive methods for measuring traces of radioactivity and the difficulties in keeping track of nuclear material at places like Japan’s $20 billion plutonium-separation facility in Rokkasho. [abstracts of presentations]

Excerpts from Jonathan Tirone. Nuclear Secrecy Feeds Concerns of Rogues Getting Weapons, Bloomberg, Oct 22, 2014n