Tag Archives: nuclear nonproliferation

The Race for Nuclear Weapons Non-Proliferation

hydrophone. image from CTBTO

As nuclear blasts go, North Korea’s first test in 2006 was small. The detonation of an underground device produced an explosive force well below one kiloton (less than a tenth of the size of the bomb dropped on Hiroshima in 1945). Even so, the vibrations it caused were recorded half a world away in the centre of Africa. Advances in the sensitivity of seismic sensors and monitoring software are now good enough to distinguish between a distant nuclear detonation and, say, a building being demolished with conventional explosives, says Lassina Zerbo, head of the Preparatory Commission for the Comprehensive Test-Ban-Treaty Organisation (CTBTO), the international organisation that seeks to enforce the agreement ratified, so far, by 163 nations.

The CTBTO operates 170 seismic stations worldwide, 11 underwater hydroacoustic centres detecting sound waves in the oceans, 60 listening stations for atmospheric infrasound (low-frequency acoustic waves that can travel long distances) and 96 labs and radionuclide-sampling facilities. More sensors are being installed. Crucially, however, the optimal number for global coverage was recently reached. It is now impossible, reckons Dr Zerbo, to test even a small nuclear weapon in secret anywhere on Earth. And on top of that, the United States Air Force runs a detection network that includes satellites that can spot nuclear-weapons tests.

It is better, though, to discover a secret weapons programme before testing. Once a country has a nuclear bomb or two, there is not much other governments can do to stop it from making more, says Ilan Goldenberg, a former head of the Iran team at the Pentagon. Plenty of states want such capabilities. The Defence Science Board, an advisory body to the Pentagon, concluded in a report last year that the number of countries that might seek nuclear weapons is higher now than at any time since the cold war. Those states include Saudi Arabia and other Sunni-Arab rivals of Iran, which in July, after long and tortuous negotiations, signed a nuclear deal with America and other nations to restrict its nuclear activities, and to allow enhanced monitoring and inspection of its facilities.

As the technologies to unearth work on clandestine nuclear weapons become more diverse and more powerful, however, the odds of being detected are improving. Innovation is benefiting detection capabilities, says Ramesh Thakur, a former UN assistant secretary-general. The products under development range from spy software that sifts through electronic communications and financial transactions to new scanners that can detect even heavily shielded nuclear material….

Software used for this type of analysis include i2 Analyst’s Notebook from IBM, Palantir from a Californian firm of the same name, and ORA, which was developed with Pentagon funds at Carnegie Mellon University in Pennsylvania. ORA has crunched data on more than 30,000 nuclear experts’ work and institutional affiliations, research collaborations and academic publications, says Kathleen Carley, who leads the ORA work at Carnegie Mellon. Changes, such as a halt in publishing, can tell stories: scientists recruited into a weapons programme typically cannot publish freely. Greater insights appear when classified or publicly unavailable information is sifted too. Credit-card transactions can reveal that, say, a disproportionate number of doctors specialising in radiation poisoning are moving to the same area.

The software uses combinatorial mathematics, the analysis of combinations of discrete items, to score individuals on criteria including “centrality” (a person’s importance), “between-ness” (their access to others), and “degree” (the number of people they interact with). Network members with high between-ness and low degree tend to be central figures: they have access to lots of people, but like many senior figures may not interact with that many. Their removal messes things up for everybody. Five or more Iranian nuclear scientists assassinated in recent years—by Israel’s Mossad, some suspect—were no doubt chosen with help from such software, says Thomas Reed, a former secretary of the United States Air Force and co-author of “The Nuclear Express”, a history of proliferation.

Importantly, the software can also evaluate objects that might play a role in a nuclear programme. This is easier than it sounds, says a former analyst (who asked not to be named) at the Pentagon’s Central Command in Tampa, Florida. Ingredients for homemade conventional bombs and even biological weapons are available from many sources, but building nukes requires rare kit. The software can reveal a manageable number of “chokepoints” to monitor closely, he says. These include links, for instance, between the few firms that produce special ceramic composites for centrifuges and the handful of companies that process the material.

A number of countries, including Japan and Russia, use network analysis. Japan’s intelligence apparatus does so with help from the Ministry of Economy, Trade and Industry, which assists in deciding which “dual use” items that might have both peaceful and military purposes should not be exported. Such work is tricky, says a member of the advisory board (who also asked not to be named) to the security council of the Russian Federation, a body chaired by Vladimir Putin. Individual items might seem innocent enough, he says, and things can be mislabelled.

Data sources are diverse, so the work takes time. Intelligence often coalesces after a ship has left port, so foreign authorities are sometimes asked to board and search, says Rose Gottemoeller, undersecretary for arms control at America’s State Department. The speed of analysis is increasing, however. Software that converts phone conversations into computer-readable text has been “extremely helpful”, says John Carlson, a former head of the Australian foreign ministry’s Safeguards and Non-Proliferation Office.

Would-be nuclear states can also reduce their networks. North Korea helped to keep its centrifuge facility secret by using mostly black-market or domestically manufactured components. Iran is also indigenising its nuclear programme, which undermines what network analysis can reveal, says Alexander Montgomery, a political scientist at Reed College in Portland, Oregon. Iran mines uranium domestically and has produced centrifuge rotors with carbon fibre, instead of importing special maraging steel which is usually required.

A big computer system to make sense of all this would help, says Miriam John, vice-chairman of the Pentagon’s Threat Reduction Advisory Committee. Which is why the Pentagon is building one, called Constellation. Dr John describes it as a “fusion engine” that merges all sorts of data. For instance, computers can comb through years of satellite photos and infra-red readings of buildings to detect changes that might reveal nuclear facilities. Constellation aims to increase the value of such nuggets of information by joining them with myriad other findings. For example, the whereabouts of nuclear engineers who have stopped teaching before retirement age become more interesting if those people now happen to live within commuting distance of a suspect building.

Yet photographs and temperature readings taken from satellites, even in low Earth orbit, only reveal so much. With help from North Korea, Syria disguised construction of a nuclear reactor by assembling it inside a building in which the floor had been lowered. From the outside the roof line appeared to be too low to house such a facility. To sidestep the need for a cooling tower, water pipes ran underground to a reservoir near a river. The concealment was so good the site was discovered not with remote sensing but only thanks to human intelligence, says Dr Tobey, the former National Security Council official. (Israel bombed the building in 2007 before it could be completed.)

Some chemical emissions, such as traces of hydrofluoric acid and fluorine, can escape from even well-built enrichment facilities and, with certain sensors, have been detectable from space for about a decade, says Mr Carlson, the Australian expert. But detecting signs of enrichment via radiation emissions requires using different sorts of devices and getting much closer to suspected sources.

The “beauty” of neutrons and alpha, beta and gamma radiation, is that the energy levels involved also reveal if the source is fit for a weapon, says Kai Vetter, a physicist at the University of California, Berkeley. But air absorbs enough radiation from uranium and plutonium bomb fuel to render today’s detectors mostly useless unless they are placed just a few dozen metres away. (Radiological material for a “dirty bomb” made with conventional explosives is detectable much farther away.) Lead shielding makes detection even harder. Not one of the more than 20 confirmed cases of trafficking in bomb-usable uranium or plutonium has been discovered by a detector’s alarm, says Elena Sokova, head of the Vienna Centre for Disarmament and Non-Proliferation, a think-tank.

Ground-based detectors are becoming more sensitive….. Detectors still need to be close to whatever it is they are monitoring, which mostly restricts their use to transport nodes, such as ports and borders. The range the detectors operate over might stretch to about 100 metres in a decade or so, but this depends on uncertain advances in “active interrogation”—the bombardment of an object with high-energy neutrons or protons to produce other particles which are easier to pick up. One problem is that such detectors might harm stowaways hiding in cargo.

That risk has now been solved, claims Decision Sciences, a Californian company spun out of the Los Alamos National Laboratory in America. It uses 16,000 aluminium tubes containing a secret gas to record the trajectory of muons. These are charged particles created naturally in the atmosphere and which pass harmlessly through people and anything else in their path. However, materials deflect their path in different ways. By measuring their change in trajectory, a computer can identify, in just 90 seconds, plutonium and uranium as well as “drugs, tobacco, explosives, alcohol, people, fill in the blank”, says Jay Cohen, the company’s chief operating officer and a former chief of research for the United States Navy. The ability to unearth common contraband will make the machine’s $5m price tag more palatable for border officials. A prototype is being tested in Freeport, Bahamas.

Other groups are also working on muon detectors, some using technology developed for particle physics experiments at the Large Hadron Collider in Switzerland. Another approach involves detecting neutrinos, which are produced by the sun and nuclear reactors, and seeing how they interact with other forms of matter. The NNSA and other organisations are backing the construction of a prototype device called WATCHMAN in an old salt mine (to shield it from cosmic rays and other interference) in Painesville, Ohio. It will be used to detect neutrinos from limited plutonium production at a nuclear power station 13km away. Such a system might have a 1,000km range, eventually. But even that means it would require a friendly neighbour to house such a facility on the borders of a country being monitored.

Once nuclear facilities have been discovered, declared or made available for inspection as part of a deal, like that signed with Iran, the job of checking what is going on falls to experts from the UN’s International Atomic Energy Agency (IAEA). The equipment available to them is improving, too. The Canadian Nuclear Safety Commission has built a prototype hand-held spectrometer for determining if traces of uranium collected on a cotton swab and blasted with a laser emit a spectral signature that reveals enrichment beyond that allowed for generating electricity. Within three years it will provide an unprecedented ability to assess enrichment without shipping samples back to a lab, says Raoul Awad, director-general of security and safeguards at the commission.

Laser scanning can also reveal other signs of enrichment. A decade ago inspectors began scanning intricate centrifuge piping with surveying lasers. A change between visits can reveal any reconfiguration of the sort necessary for the higher levels of enrichment needed for bombmaking. Secret underground facilities might also be found by wheeling around new versions of ground-penetrating radar.

The remote monitoring of sites made available to inspectors is also getting better. Cameras used to record on videotape, which was prone to breaking—sometimes after less than three months’ use, says Julian Whichello, a former head of the IAEA’s surveillance unit. Today’s digital cameras last longer and they can be programmed to take additional pictures if any movement is detected or certain equipment is touched. Images are encrypted and stamped with sequential codes. If technicians at a monitored facility delete any pictures, the trickery will be noticed by software and the inspectors informed.

Such technology, however, only goes so far. The IAEA cannot inspect computers and countries can veto the use of some equipment. It does seem that inspectors sent to Iran will get access to Parchin, a site near Tehran where intelligence agencies say tests related to nuclear-weapons making took place. (Iran denies it has a military programme.) But even the best tech wizardry can only reveal so much when buildings have been demolished and earth moved, as in Parchin.

Could nuclear weapons be built in secret today? …. A senior American State Department counter-proliferation official (whose asked to remain anonymous), however, says that it is not impossible…Companies, including a General Electric consortium, are making progress enriching uranium with lasers . If this becomes practical, some worry that it might be possible to make the fuel for a nuclear bomb in smaller facilities with less fancy kit than centrifuges

Monitoring nuclear weapons: The nuke detectives, Economist Technology Quarterly, Sept. 5, 2015, at 10

Why Nuclear Weapons are Here to Stay

 More details A Soviet inspector examines a BGM-109G Gryphon ground-launched cruise missile in 1988 prior to its destruction. Image from wikipedia

[D]espite the establishment in 2009 of [a process to] discuss multilateral disarmament, not much has happened. The main reason is the chilling of relations between Russia and the West, which predated Russia’s annexation of Crimea. An offer by Mr Obama in 2013 of new negotiations to reduce each side’s stock of warheads by a third was met with stony silence.

More recently Russia has, according to America, violated both the 1987 Intermediate Nuclear Forces treaty, by testing a banned missile, and the Budapest Memorandum of 1994 that guaranteed Ukraine’s security when it gave up the nuclear weapons it had inherited on the break-up of the Soviet Union. The Russians are also refusing to attend next year’s Nuclear Security Summit, a meeting to prevent fissile material falling into the wrong hands.

Without further cuts in American and Russian nuclear forces (which account for more than 90% of the world’s nuclear weapons), China, the most opaque of the P5 power (US, UK, Russia, China, France), will block attempts to get multilateral disarmament talks going. However, Rose Gottemoeller, America’s under-secretary of state for arms control, praises China for its leading role in producing a common glossary of nuclear terminology. This may not sound much, but it is seen within the P5 as essential for future negotiations.

Ms Gottemoeller is also keen to stress that, despite the Russian impasse, America has tried to meet its obligations. It is eliminating “excess” warheads at the rate of almost one a day and closing down old bits of nuclear infrastructure. …It is doubtful whether these modest, incremental efforts will cut much ice with the Humanitarian Impacts of Nuclear Weapons Initiative, a movement supported by civil-society groups and championed by Austria, Norway and Mexico. Faced with what they see as foot-dragging by the P5 (which are modernising their nuclear forces to maintain their long-term effectiveness), the initiative’s backers, some of which want to make nuclear weapons illegal, may question whether working through the NPT serves any purpose…

Another source of friction is the failure to hold the conference on creating a WMD-free zone in the Middle East that was promised in 2010. Israel,…insists that regional security arrangements must precede any talks on disarmament, whereas Egypt says the first step is for Israel to accede to the NPT—a non-starter.

Excerpts from Nuclear weapons: Fractious, divided but still essential, Economist, May 2, 2015, at 54

Natanz, Fordow, Parchin: the Nuclear Capability of Iran

Anti-aircraft guns guarding Natanz Nuclear Facility, Iran. Image from wikipedia

One [of the problems] is the ambiguity about what rights the Iranians will have to continue nuclear research and development. They are working on centrifuges up to 20 times faster than today’s, which they want to start deploying when the agreement’s [the currently negotiated agreement between Iran and United States/Europe]  first ten years are up. The worry is that better centrifuges reduce the size of the clandestine enrichment facilities that Iran would need to build if it were intent on escaping the agreement’s strictures.

That leads to the issue on which everything else will eventually hinge. Iran has a long history of lying about its nuclear programme. It only declared its two enrichment facilities, Natanz and Fordow, after Western intelligence agencies found out about them. A highly intrusive inspection and verification regime is thus essential, and it would have to continue long after other elements of an agreement expire. Inspectors from the IAEA would have to be able to inspect any facility, declared or otherwise, civil or military, on demand…

For a deal to be done in June 2015, Iran will have to consent to an [intrusive] inspection regime. It will also have to answer about a dozen questions already posed by the IAEA about the “possible military dimensions” of its nuclear programme. Yet on March 23, 2015Yukiya Amano, the agency’s director, said that Iran had replied to only one of those questions. Parchin, a military base which the IAEA believes may have been used for testing the high-explosive fuses that are needed to implode, and thus set off, the uranium or plutonium at the core of a bomb, remains out of bounds. Nor has the IAEA been given access to Mohsen Fakhrizadeh, the physicist and Revolutionary Guard officer alleged to be at the heart of the weapons development research. The IAEA’s February 19, 2015 report on Iran stated that it “remains concerned about the possible existence…of undisclosed nuclear-related activities…including activities related to the development of a nuclear payload for a missile.”

Excerpts from, The Iran Nuclear Talks: Not Yet the Real Deal, Economist, Apr. 4, 2015, at 43

Iran Nuclear Talks: the Khamenei Card

Gas centrifuge cascade. Image from wikipedia

On July 7, 1014 as critical nuclear negotiations got underway in Vienna between Iran, the United States, Europe, Russia and China, Khamenei (Iranian Supreme Leader) started talking hard numbers.  The Supreme Leader’s remarks were unprecedented both because they represented a blatant intervention from his perch in Tehran in the super-sensitive talks in Vienna, and because they relayed confidential technical details that had not been aired publicly before by Iranian officials.

The moment could not be more critical. An agreement is supposed to be reached before July 20, 2014 that will rein in the threat of Iran acquiring nuclear weapons and end or curtail the Western sanctions that have put so much pressure on Tehran. Failure to reach an accord will add yet more potentially apocalyptic uncertainties to the Middle Eastern scene…

The Supreme Leader started talking about SWUs, which it is fair to say few Iranians, or for that matter Americans, Europeans, Russians or Chinese ever have heard of.  In this context the acronym stands for “separative work units,” which relates directly to Iran’s ability to enrich uranium to levels that might feed into nuclear weapons. SWU defines the capability derived from the number of uranium-enriching centrifuges and their efficiency. For example one thousand AR1 centrifuges with the efficiency of 0.9 translates into 900 SWU, whereas 225 AR2 centrifuges with an efficiency of 4 translates into 900 SW…

“They want us to be content with 10,000 SWUs,” he said. That is, he estimates the bottom line the West will accept. “But they have started from 500 and 1000 SWUs,” he added. “Our people say that we need 190,000 SWUs,” he went on. That’s a big spread to try to close.  Khamenei then raised the problem of American and European objections to the more-or-less bomb-proof underground facility Iran has built at Fordo, where much of its enrichment goes on. “They emphasize Fordo because they cannot get to it,” said Khamenei. “They say you must not have a place which we cannot strike. Isn’t this ridiculous?”

Last December [2013] Khamenei said publicly he would not interfere in the negotiations and would leave the details to the diplomats. Now it appears he is playing a more shadowy game, either dictating terms to the Iranian team in Vienna or, perhaps, providing them the cover they need to stand firm.

A source close to the negotiations told IranWire that the numbers Khamenei cited are precisely what American negotiators have put on the table, and constitute one of the confidential topics being discussed over the past few months. Two days before Khamenei spoke, Under Secretary of States for Political Affairs Wendy Sherman, the senior American negotiator, said that Iran must end up with a fraction of the centrifuges it currently runs, but she did not cite any numbers.

The source said that Khamenei’s statements are technically significant, and are in line with the terms of the negotiations, which deal with SWUs rather than the number of centrifuges as such.

According to a European diplomat who is a member of his country’s nuclear negotiating team, the accuracy of the numbers leaked by Khamenei is both astonishing and worrisome, because he is limiting publicly the concessions that might be made by Iranian President Hassan Rouhani’s team….

It is clear Khamenei wants to leave no doubt about his regime’s red lines in the negotiations…  But Khamenei doesn’t see this crisis only in terms of nukes. For the West, he says, the nuclear issue “is just an excuse” to pressure Iran, he said. “If it is not the nuclear issue they will come up with another excuse—human rights, women’s right, etc.”

Excerpts from Reza HaghighatNejad, Iran Supreme Leader Spills the Nuke Talk Secrets, Daily Beast, July 9, 2014

Nuclear Materials in Iraq and 2014 Civil War

university of mosul. image from http://www.uomosul.edu.iq/en/

The U.N. atomic agency said on Thursday (July 10, 2014) it believed nuclear material which Iraq said had fallen into the hands of insurgents was “low grade” and did not pose a significant security risk.  Iraq told the United Nations that the material was used for scientific research at a university in the northern town of Mosul and appealed for help to “stave off the threat of their use by terrorists in Iraq or abroad”.

Iraq’s U.N. envoy this week also said that the government had lost control of a former chemical weapons facility to “armed terrorist groups” and was unable to fulfill its international obligations to destroy toxins kept there.  An al Qaeda offshoot, Islamic State in Iraq and the Levant, took over swathes of Syria and Iraq before renaming itself Islamic State in June and declaring its leader caliph – a title held by successors of the Prophet Mohammad.

The U.N. International Atomic Energy Agency (IAEA) “is aware of the notification from Iraq and is in contact to seek further details”, IAEA spokeswoman Gill Tudor said.  “On the basis of the initial information we believe the material involved is low grade and would not present a significant safety, security or nuclear proliferation risk,” she said. “Nevertheless, any loss of regulatory control over nuclear and other radioactive materials is a cause for concern.”

Iraqi U.N. Ambassador Mohamed Ali Alhakim told U.N. Secretary-General Ban Ki-moon in a July 8 letter that nearly 40 kg (88 pounds) of uranium compounds were kept at the university.  “Terrorist groups have seized control of nuclear material at the sites that came out of the control of the state,” he said.

However, a U.S. government source said it was not believed to be enriched uranium and therefore would be difficult to use to manufacture into a nuclear weapon. Russian Foreign Ministry spokesman Alexander Lukashevich said the reported seizure likely posed no direct threat. But, he said: “The sheer fact that the terrorists … show unmistakeable interest in nuclear and chemical materials is, of course, very alarming”.

Any loss or theft of highly enriched uranium, plutonium or other types of radioactive material is potentially serious as militants could try to use them to make a crude nuclear device or a “dirty bomb”, experts say.  Olli Heinonen, a former IAEA chief inspector, said that if the material came from a university it could be laboratory chemicals or radiation shielding, consisting of natural or depleted uranium.  “You cannot make a nuclear explosive from this amount, but all uranium compounds are poisonous,” Heinonen told Reuters. “This material is also not ‘good’ enough for a dirty bomb.”  In a so-called “dirty bomb”, radioactive material such as might be found in a hospital or factory is combined with conventional explosives that disperse the hazardous radiation.

Citing U.N. investigations dating back ten years or more, Heinonen said there should be no enriched uranium in Mosul. The Vienna-based IAEA helped dismantle Iraq’s clandestine nuclear programme in the 1990s – during Heinonen’s three decades there.  “Iraq should not have any nuclear installation left which uses nuclear material in these quantities,” he said.  Another proliferation expert, Mark Hibbs of the Carnegie Endowment think-tank, said: “The Mosul region and several university departments were scoured again and again by U.N. inspectors for a decade after the first Gulf War (1990-1991) and they know what materials were stored there.”  “These included tons of uranium liquid wastes, sources, uranium oxides, and uranium tetrafluoride. Some of these items are still there, but there’s no enriched uranium,” he said.

Excerpts from Fredrik Dahl, UPDATE 4-Seized nuclear material in Iraq “low grade” – UN agency, Reuters, July 10, 2014

Iran, China and the United States: Unlove Triangle

list

The Chinese government lashed out against the U.S. on April 30, 2014 saying America’s renewed efforts to capture a Chinese national accused of supplying Iran with missile components will only “damage the nonproliferation cooperation.” “The Chinese government is opposed to the U.S. government using domestic law against Chinese enterprises [and] individuals to implement unilateral sanctions,” Chinese Foreign Ministry spokesperson Qin Gang told reporters today. “The U.S.’s approach will not help resolve the issue, but will instead damage the nonproliferation cooperation. What I want to emphasize is that the Chinese government puts a great emphasis on the control of nonproliferation exports, and for any violators of China’s nonproliferation laws and regulations, they will be severely punished by the law.”

Gang’s comments came a day after a number of U.S. federal agencies announced a litany of new enforcement actions targeting Chinese national Li Fangwei, also known as Karl Lee, including a $5 million reward for information leading to Fangwei’s arrest or conviction. For years the U.S. had accused Fangwei of supplying Iran with prohibited materials that could be used in its ballistic missile program.

In addition to the $5 million reward, the U.S. Treasury, which had already taken action against Fangwei and firms to which he’s connected—adding eight additional companies to its list of Specifically Designated Nationals and Blocked Persons. The U.S. Commerce Department also added nine China-based suppliers of Fangwei’s to its own Entity List.

The Department of Justice has charged Fangwei with seven counts related to an alleged scheme to launder money through U.S.-based financial institutions and, if arrested and convicted on all counts, he could spend the rest of his life in prison.  “As alleged, Li Fanwei has used subterfuge and deceit to continue to evade U.S. sanctions that had been imposed because of his illicit trade in prohibited materials with Iran,” U.S. Attorney Preet Bharara said. “Previously having been exposed as a violator of those sanctions, Li spun a web of front companies to carry out prohibited transactions essentially in disguise.”

DOJ Assistant Attorney General John Carlin said the coordinated action against Fangwei was a show of the government’s “all tools” approach shutting down his “proliferation activities.”
Fangwei has previously denied U.S. accusations against him, telling Reuters last year (2013) his company stopped selling to Iran after the U.S. began sanctioning the Middle Eastern country years ago. Fangwei said that before that his company did business with Iran, “but we did not export the goods they said we did, missiles or whatever.”

China Raps US After $5M Bounty Placed on Alleged Weapons Supplier,  ABC News, Apr. 30, 2014

How Iran Defeated the Sanctions

Financial Sanctions against Iran and the Chinese Loophole

The Nuclear Proliferation Potential of Laser Enrichment

The following is being released by Physicians for Social Responsibility:  The U.S. Nuclear Regulatory Commission (NRC) is putting U.S. nuclear non-proliferation policy at risk if it decides not to require a formal nuclear proliferation assessment as part of the licensing process for a uranium laser enrichment facility in Wilmington, N.C.  That’s the message from 19 nuclear non-proliferation experts in a letter sent today asking the NRC to fulfill its statutory responsibility to assess proliferation threats related to the technologies it regulates. The letter is available online at http://www.psr.org/nrcassessment.

Global Laser Enrichment, LLC, a joint venture of General Electric (USA), Hitachi (Japan) and Cameco (Canada), has applied for a license to operate a laser enrichment facility in Wilmington, North Carolina, based on Australian SILEX technology. The NRC licensing review schedule sets September 30, 2012 as the date of license issuance.  One of the authors of the letter, Catherine Thomasson, MD, executive director, Physicians for Social Responsibility, said:“It is a widely shared view that laser enrichment could be an undetectable stepping-stone to a clandestine nuclear weapons program. To strengthen U.S. policy and protect the U.S. and the world from nuclear proliferation, the NRC should systematically and thoroughly assess the proliferation risks of any new uranium enrichment technology BEFORE issuing a license allowing their development.”  Dr. Ira Helfand, co-president of International Physicians for the Prevention of Nuclear War, said: “If the U.S. is going to have moral authority in dealing with proliferation threats in other nations, such as Iran, it must do a better job of taking responsible steps in relation to proliferation threats in our own backyard. In fact, a persuasive case can be made that laser enrichment technology requires even more immediate action, since this is a known danger that can be addressed directly by the NRC under its existing regulatory authority.”

In the letter, the experts note that the NRC has no rules or requirements for a nuclear proliferation assessment as part of this licensing process. The experts are concerned that the Commission is falling short in its duties since a 2008 NRC manual on enrichment technology clearly states that laser enrichment presents “extra proliferation concerns due to the small size and high separation factors.”

Previous letters to the NRC asking for a proliferation assessment, signed by many of today’s signatories, have been rebuffed. NRC is on record stating that the National Environmental Policy Act does not require preparation of a proliferation assessment. However, a March 27, 2012 memorandum from the Congressional Research Service clearly concludes that the NRC has legal authority “to promulgate a regulation” requiring a proliferation assessment as part of the licensing process.  Both the Nuclear Non-Proliferation Act of 1978 and the Atomic Energy Act are cited by the experts as statutory basis of the NRC’s responsibility to assess proliferation risks.

Excerpt, 19 Experts: Nuclear Proliferation Risks Of Laser Enrichment Require Fuller NRC Review, PRNewswire, Sept 5, 2012

Proliferation Risks of Laser Enrichment

Laser Uranium Enrichment