Tag Archives: nuclear power

Less Radioactive: the advantages of thorium reactors

MSR Reactor. image from wikipedia

Existing  nuclear reactors use uranium or plutonium—the stuff of bombs.. Thorium, though, is hard to turn into a bomb; not impossible, but sufficiently uninviting a prospect that America axed thorium research in the 1970s. It is also three or four times as abundant as uranium. In a world where nuclear energy was a primary goal of research, rather than a military spin-off, it would certainly look worthy of investigation. And it is, indeed, being investigated.

India has abundant thorium reserves, and the country’s nuclear-power programme, which is intended, eventually, to supply a quarter of the country’s electricity (up from 3% at the moment), plans to use these for fuel. This will take time. The Indira Gandhi Centre for Atomic Research already runs a small research reactor in Kalpakkam, Tamil Nadu, and the Bhabha Atomic Research Centre in Mumbai plans to follow this up with a thorium-powered heavy-water reactor that will, it hopes, be ready early next decade.

China’s thorium programme looks bigger. The Chinese Academy of Sciences claims the country now has “the world’s largest national effort on thorium”, employing a team of 430 scientists and engineers, a number planned to rise to 750 by 2015. This team, moreover, is headed by Jiang Mianheng, an engineering graduate of Drexel University in the United States who is the son of China’s former leader, Jiang Zemin (himself an engineer). Some may question whether Mr Jiang got his job strictly on merit. His appointment, though, does suggest the project has political clout. The team plan to fire up a prototype thorium reactor in 2015. Like India’s, this will use solid fuel. But by 2017 the Shanghai Institute of Applied Physics expects to have one that uses a trickier but better fuel, molten thorium fluoride…

One of the cleverest things about (Liquid Fluoride Thorium Reactors) LFTRs is that they work at atmospheric pressure. This changes the economics of nuclear power. In a light-water reactor, the type most commonly deployed at the moment, the cooling water is under extremely high pressure. As a consequence, light-water reactors need to be sheathed in steel pressure vessels and housed in fortress-like containment buildings in case their cooling systems fail and radioactive steam is released. An LFTR needs none of these.

Thorium is also easier to prepare than its rivals… By contrast thorium, once extracted from its ore, is reactor-ready…[T]horium reactors can run non-stop for years, unlike light-water reactors. These have to be shut down every 18 months to replace batches of fuel rods.  Thorium has other advantages, too. Even the waste products of LFTRs are less hazardous than those of a light-water reactor. There is less than a hundredth of the quantity and its radioactivity falls to safe levels within centuries, instead of the tens of millennia for light-water waste.

Paradoxically, though, given thorium’s history, it is the difficulty of weaponising thorium which many see (as it were) as its killer app in civil power stations. One or two 233U bombs were tested in the Nevada desert during the 1950s and, perhaps ominously, another was detonated by India in the late 1990s. But if the American experience is anything to go by, such bombs are temperamental and susceptible to premature detonation because the intense gamma radiation 233U produces fries the triggering circuitry and makes handling the weapons hazardous. The American effort was abandoned after the Nevada tests….. Rogue nations interested in an atom bomb are thus likely to leave thorium reactors well alone when there is so much poorly policed plutonium scattered around the world. So a technology abandoned because it could not be turned into weapons may now, in part for that very reason, be about to resurface.

Excerpts from Thorium reactors: Asgard’s fire, Economist,  April 12, at 78

The Benefits of Being a Threshold Nuclear Power: Japan v. China

japan nucler fuel limited logo

China has urged Japan to return over 300 kilograms of weapons grade plutonium to the Unites States and to explain how it intends to resolve its surplus plutonium problem. At a regular press briefing in Beijing on 17 February 2014, and in response to a question on Japan’s plutonium stocks, a Foreign Ministry spokeswoman stated:

“China attaches great importance to nuclear proliferation risks and potential threats posed by nuclear materials to regional security. China has grave concerns over Japan’s possession of weapons-grade nuclear materials… Japan’s failure to hand back its stored weapons-grade nuclear materials to the relevant country has ignited concerns of the international community including China.”

As reported in January 2014, agreement has been reached between the United States and Japan for the return of plutonium used in the Fast Critical Assembly (FCA) in JAERI Tokai Research Establishment, Tokai-mura, Ibaraki Prefecture. The formal agreement is expected to be concluded at the Nuclear Security Summit in the Netherlands in March 2014. In its latest declaration to the International Atomic Energy Agency (IAEA) and in its 2012 plutonium management report Japan stated that the FCA facility has the total of 331 kg of plutonium, of which 293 kg is fissile plutonium. The largest share of this plutonium was supplied by the United Kingdom in addition to that supplied by the United States.

Commenting further, the Chinese Foreign Ministry declared:

“China believes that Japan, as a party to the Treaty on the Non-Proliferation of Nuclear Weapons, should strictly observe its international obligations of nuclear non-proliferation and nuclear security. The IAEA requires all parties to maintain a best possible balance of supply and demand of nuclear materials as contained in the Guidelines for the Management of Plutonium. Japan’s large stockpile of nuclear materials including weapons-grade materials on its territory is an issue concerning nuclear material security, proliferation risks and big supply-demand imbalance.”

In addition to the call for the return of the weapon’s grade plutonium, the Chinese statement also raises a question over Japanese fuel cycle policy and its inability to use its existing plutonium stocks. With all 48 nuclear power reactors shutdown there is currently no demand for its separated plutonium as mixed oxide (MOX) fuel. However, Japanese policy continues to plan the commercial operation of the Rokkasho-mura reprocessing plant as early as October 2014, following a safety assessment by the Nuclear Regulatory Authority (NRA). In its latest declaration to the IAEA, Japan’s Atomic Energy Commission reported that as of 31 December 2012, Japan held 44,241 kg of separated unirradiated plutonium, of which 9,295 kg was stored in Japan and 34,946 kg was stored abroad. Japan’s plutonium program, its challenges and alternatives was recently addressed at a Tokyo symposium and in detailed analysis by IPFM.

As yet, there has been no official response from the Japanese government to the Chinese Foreign Ministry statement, which has been extensively reported through Chinese media outlets

By Shaun Burnie with Mycle Schneider, China calls on Japan to return weapons grade plutonium to the United States, International Panel on Fissile Materials, Feb 18, 2014

Brazil and France Collaborate on Angra 3 Nuclear Plant

Angra 3 image (upon completion)

Eletrobras Eletronuclear has awarded a contract to Areva to complete the construction of the Angra 3 nuclear reactor, located in Rio de Janeiro, Brazil.  Under the €1.25bn contract, the company will supply engineering services and components, as well as the digital instrumentation and control system for the reactor.  Additional responsibilities include provision of assistance in the supervision of the installation works and the commissioning activities.

Areva president and CEO Luc Oursel said the contract continues the company’s partnership with Eletrobras that started with the construction and the supply of reactor services for the Angra 2 reactor.  ”The completion of Angra 3 confirms Brazil’s engagement in an ambitious nuclear program and illustrates the relevance of this energy source as a solution for sustainable economic development,” Oursel added.

Initiated in 2006, the construction of the 1,405 MWe Angra 3 pressurized water reactor is expected to help the Brazilian government meet the country’s increasing energy demand, and balance the energy mix.  Besides featuring the latest enhancements made to currently operational reactors, especially in terms of safety, the Angra 3 design also responds to the guidelines of the International Atomic Energy Agency (IAEA) and the Brazilian nuclear safety authority’s post-Fukushima standards.  Connected to the grid in 1985 and 2001, the Angra 1 and Angra 2 reactors have an output of 640Mwe and 1,350MWe, respectively.

Areva to support third Angra 3 nuclear reactor construction, EBR Staff Write, Nov. 8, 2013

The Lure of Impossible: Choking Uranium Markets

The Rössing Uranium Mine in Namibia

Making nuclear weapons requires access to materials—highly enriched uranium or plutonium—that do not exist in nature in a weapons-usable form.   The most important suppliers of nuclear technology have recently agreed guidelines to restrict access to the most sensitive industrial items, in the framework of the Nuclear Suppliers Group (NSG). Nevertheless, the number of countries proficient in these industrial processes has increased over time, and it is now questionable whether a strategy based on close monitoring of technology ‘choke points’ is by itself a reliable barrier to nuclear proliferation.  Time to tighten regulation of the uranium market?

Not all the states that have developed a complex nuclear fuel cycle have naturally abundant uranium. This has created a global market for uranium that is relatively free—particularly compared with the market for sensitive technologies….

Many African states have experienced increased investment in their uranium extractive sectors in recent years. Many, though not all, have signed and ratified the 1996 African Nuclear Weapon Free Zone (Pelindaba) Treaty, which entered into force in 2009. Furthermore, in recent years, the relevant countries have often worked with the IAEA to introduce an Additional Protocol to their safeguards agreement with the agency…

One proliferation risk inherent in the current system is that inadequate or falsified information connected to what appear to be legitimate transactions will facilitate uranium acquisition by countries that the producer country would not wish to supply….

A second risk is that uranium ore concentrate (UOC) is diverted, either from the site where it was processed or during transportation, so the legitimate owners no longer have control over it. UOC is usually produced at facilities close to mines—often at the mining site itself—to avoid the cost and inconvenience of transporting large quantities of very heavy ore in raw form to a processing plant.,,,UOC is usually packed into steel drums that are loaded into standard shipping containers for onward movement by road, rail or sea for further processing. The loss of custody over relatively small quantities of UOC represents a serious risk if diversion takes place regularly. The loss of even one full standard container during transport would be a serious proliferation risk by itself. There is thus a need for physical protection of the ore concentrate to reduce the risk of diversion at these stages.

A third risk is that some uranium extraction activity is not covered by the existing rules. For example, uranium extraction can be a side activity connected to gold mining or the production of phosphates. Regulations should cover all activities that could lead to uranium extraction, not only those where uranium extraction is the main stated objective.

Restricting access to natural uranium could be an important aspect of the global efforts to obstruct the spread of nuclear weapons…

Excerpts, from  Ian Anthony and Lina Grip, The global market in natural uranium—from proliferation risk to non-proliferation opportunity, SIPRI, Apr. 13, 2013

The Sanction Busters: Iran

Fujairah UAE

The past 15 months have been grim for Iranian businesses which trade with the outside world. America has tightened sanctions against Iran’s financial system; the European Union has put an embargo on its oil; and international traders are wary of dealing with the country.Iranian businesses are used to fighting for survival. The Islamic Republic has faced sanctions of one sort or another since its creation in 1979. Parts for Iran’s ageing civilian airliners trickle in from the black market. A host of sanctioned products, from industrial chemicals to anti-aircraft missiles, come from China. Almost any good can be found in Iran, at a price.  Amir, a manager in a mining business, says he regularly meets British and German suppliers in Turkey, to obtain the most advanced equipment to tap Iran’s mineral wealth. “Foreign firms are terrified of doing something illegal, but in the end they are businessmen,” he says. “The Europeans send our cargoes to Dubai, documented as the final destination. From there we are in charge.” Amir uses Gulf middlemen to change the documents, for a fee of 3-5%, before the goods are shipped to Bandar Abbas, Iran’s largest port.

Because few international banks deal with sanctioned Iranian institutions, Iranian importers have to find roundabout ways of paying suppliers. Amir uses a network of Iranian go-betweens who own companies in South Africa and Malaysia to pay his suppliers’ Western banks. He says 30% of his revenues are spent on avoiding sanctions—not counting the time involved.

The sanctions have hit Iran’s oil industry the hardest. Iran’s government depends on oil for more than half of its revenue, but exports have fallen and grown more volatile. The country’s total production is a quarter less than the 3.6m barrels per day it pumped in 2011.  One way of keeping sales going is to dress up Iranian oil as Iraqi. Another trick is to move Iranian oil onto foreign tankers on the open sea. Once crews have switched off their ships’ tracking beacons, this is all but undetectable. The oil is sold at a discount. Fujairah, in the United Arab Emirates (UAE), is a big market for Iranian oil. Business is down, says Sajad, but European firms still trade with Iran, using Swiss subsidiaries which broker deals with the Iranians and collect the crude using tankers under the flag of a third country.

The sanctions have been a fillip for the few institutions still handling Iranian money. One foreign bank charges 5% on cash moving in or out of Iran, says an Iranian shipping source. Normal business rates are a fraction of a percent, but Iranian firms have little choice.

Sometimes the fear of sanctions is more effective than the sanctions themselves. A customer in the UAE owed $1.3m to Sajad’s shipping firm but would only send it in costly small instalments. Sajad flew to the Gulf to pick up the balance in cash. “I was nervous about what I would say to customs from either country if they checked my suitcase,” he says. “I decided I would tell the truth. I am not a criminal.” But no one did.

Dodging sanctions in Iran: Around the block, Economist, Mar. 3, 2013, at 68?

Sanctions Against Iran and the Afghan Loophole

How Iran Copes with Actions?

The Battery of Europe; Swiss hydroelectricity is not Green

Mauvoisin dam, Switzerland

Swiss energy companies are determined to turn the country into a ‘battery for Europe’. Vast investments are made in big-scale water power projects. But it is not certain they will eventually pay off.  With the decision for a nuclear shutdown, the spotlight in Switzerland and Germany has switched to renewable energy sources. In Germany there’s a massive boost to solar and wind energy production, while Switzerland’s energy companies focus on increasing their storage capacities in the Alps.  About 11 percent of Europe’s electricity flows through Switzerland. The Swiss electricity industry stresses the advantages of the country’s central location in Europe and its topography. On the European energy map, Swiss mountain lakes could function as a huge battery for unsteadily generated renewable energy, and generate high revenues.

Natural and artificial mountain lakes are an essential component of Switzerland’s energy supply. Water power makes up 57 percent of the country’s electricity production. Some of these lakes aren’t just natural water reservoirs though, but serve as basins for pumped-storage hydro power plants (PSPs).  The system is simple and has long been a good business. Throughout the day, cheap, spare electricity is bought on the market and then used to pump water from a lower reservoir to a basin further up the mountain. At times when demand for electricity is high, stored water is released and drives turbines that produce electricity, which can then be sold on the market for a higher price.  Currently, 11 such plants are running in Switzerland with a combined 1400 megawatt capacity. Three other projects are under construction, to increase Swiss pumped-storage capacity to 3500 megawatts by 2017. Two more PSPs are being planned: ‘Grimsel 3′ at the Grimsel Pass in the Bernese Alps and ‘Lago Bianco’ at the Bernina Pass in Grisons.

“The symbiosis between nature and technology has defined the character of this landscape,” writes the Grimsel region’s tourism agency. Ernst Baumberger, press officer at the regional energy company KWO looks at Grimsel through two lenses: while praising the region’s beauty, Baumberger points out that a plenty of precipitation, glaciation, rock as building ground and the immense altitude difference make it ideal for water power use. KWO put its first power plant at Grimsel in operation 80 years ago.  The company recently was licenced to implement its 1.2 billion Swiss francs project ‘KWOplus’, including the construction of a second PSP (‘Grimsel 3′). The plant will have a 660 megawatt capacity, which is about the power of an average Swiss nuclear plant. The plan is controversial, both politically and economically.

“Switzerland doesn’t need any additional PSPs. There’s neither a lack of batteries, nor a grid stability problem,” argues Jürg Buri, managing director of the Swiss Energy Foundation (SES). He says that no country operates as many flexible power stations as Switzerland….Environmental organisations say that mainly cheap electricity from coal and nuclear plants is used for the pumping and that during the process, about a quarter of the energy is lost. Even worse, at windy times, PSPs keep coal and nuclear plants running.  There’s nothing green about pumped-storage hydroelectricity anyway. “If today’s PSPs were supplied with clean energy, that business would be unprofitable,” Buri says. “The revenues of the peak current wouldn’t make up for the purchase price and the energy lost for pumping.”

According to the licence, KWO is obliged to run Grimsel 3 with as much renewable energy as “economically and technically possible.” No fixed share was defined however. KWO’s Baumberger stresses that in the long term, the company’s PSPs should run solely with green electricity. “However, the primary criteria will remain the profitability,” he adds.  While the energy company praises Grimsel 3 as an important contribution to the security of energy supply for the country, Jürg Buri claims that the pumped-storage business further strains transmission lines. “In fact, to run Grimsel 3, even more lines would have to be built, something which people often forget about….

The Swiss Association for Water Management (SWV) views investments in PSPs as risky and their profitability as volatile. At the Bernische Kraftwerke (BKW), which holds half of KWO’s shares and manages electricity trade, the media officer declines to comment on the prospects of pumped-storage hydroelectricity…

In contrast to environmental organisations, KWO’s Baumberger remains optimistic. He stresses that in the light of booming wind and solar energy in Europe, the demand for further storage capacities will grow. “What Switzerland so far offers in terms of energy storage is nothing but a drop in the ocean.”  While opinions on the future of Swiss pumped-storage hydroelectricity differ sharply, one thing seems sure: the industry’s prospects lie in the hands of European, not Swiss politicians and businessmen.

Excerpts from Ray Smith, Swiss Battery May Lose Power, IPS, Dec. 8, 2012

Safety of Nuclear Fuel at Pools: From Fukushima to Yucca Mountain

An Entergy Corp.  unit sued the U.S. for $100 million alleging the government breached a contract for disposal of nuclear waste at two plants in Michigan.  Entergy Nuclear Palisades LLC, owner of the Palisades Nuclear Plant and the Big Rock Point plant, alleged yesterday that the Energy Department collected fees under a 1983 contract without ever starting to dispose of the radioactive material. The suit is in the U.S. Court of Federal Claims in Washington.  Entergy and a previous owner of the shuttered Big Rock Point plant “have fully complied with all their fee payment obligations under the contract,” according to the complaint. “The government, however, has failed to perform its reciprocal obligation to dispose of spent nuclear fuel, and currently has no plan to meet these obligations.”

Entergy’s lawsuit is the latest legal challenge stemming from the federal government’s failure to create a central, long- term facility to store nuclear waste.  Most nuclear-plant owners continue to store spent nuclear fuel onsite despite contributing for decades into a fund meant to finance a central waste depository.

The U.S. Nuclear Regulatory Commission is freezing U.S. operating licenses for at least two years as it reassesses waste-storage risks and strategies in response to a June 8 order by the U.S. Court of Appeals in Washington.  See US Court of Appeals

Entergy Corp., based in New Orleans, is the second-largest owner of nuclear plants in the U.S.  Through June 30, Entergy and Consumers Energy Co., the former owner of Big Rock Point, have paid about $274 million into the fund under the contract, the company said. Charles Miller, a Justice Department spokesman, declined to comment on the lawsuit.

The case is Entergy Nuclear Palisades LLC v. U.S., 12-cv- 1641, U.S. Court of Federal Claims (Washington).

By Tom Schoenberg and Julie Johnsson, Entergy Sues U.S. for Failure to Dispose of Nuclear Waste, Bloomberg, Sep 27, 2012