Tag Archives: nuclear power

The Lure of Impossible: Choking Uranium Markets

The Rössing Uranium Mine in Namibia

Making nuclear weapons requires access to materials—highly enriched uranium or plutonium—that do not exist in nature in a weapons-usable form.   The most important suppliers of nuclear technology have recently agreed guidelines to restrict access to the most sensitive industrial items, in the framework of the Nuclear Suppliers Group (NSG). Nevertheless, the number of countries proficient in these industrial processes has increased over time, and it is now questionable whether a strategy based on close monitoring of technology ‘choke points’ is by itself a reliable barrier to nuclear proliferation.  Time to tighten regulation of the uranium market?

Not all the states that have developed a complex nuclear fuel cycle have naturally abundant uranium. This has created a global market for uranium that is relatively free—particularly compared with the market for sensitive technologies….

Many African states have experienced increased investment in their uranium extractive sectors in recent years. Many, though not all, have signed and ratified the 1996 African Nuclear Weapon Free Zone (Pelindaba) Treaty, which entered into force in 2009. Furthermore, in recent years, the relevant countries have often worked with the IAEA to introduce an Additional Protocol to their safeguards agreement with the agency…

One proliferation risk inherent in the current system is that inadequate or falsified information connected to what appear to be legitimate transactions will facilitate uranium acquisition by countries that the producer country would not wish to supply….

A second risk is that uranium ore concentrate (UOC) is diverted, either from the site where it was processed or during transportation, so the legitimate owners no longer have control over it. UOC is usually produced at facilities close to mines—often at the mining site itself—to avoid the cost and inconvenience of transporting large quantities of very heavy ore in raw form to a processing plant.,,,UOC is usually packed into steel drums that are loaded into standard shipping containers for onward movement by road, rail or sea for further processing. The loss of custody over relatively small quantities of UOC represents a serious risk if diversion takes place regularly. The loss of even one full standard container during transport would be a serious proliferation risk by itself. There is thus a need for physical protection of the ore concentrate to reduce the risk of diversion at these stages.

A third risk is that some uranium extraction activity is not covered by the existing rules. For example, uranium extraction can be a side activity connected to gold mining or the production of phosphates. Regulations should cover all activities that could lead to uranium extraction, not only those where uranium extraction is the main stated objective.

Restricting access to natural uranium could be an important aspect of the global efforts to obstruct the spread of nuclear weapons…

Excerpts, from  Ian Anthony and Lina Grip, The global market in natural uranium—from proliferation risk to non-proliferation opportunity, SIPRI, Apr. 13, 2013

The Sanction Busters: Iran

Fujairah UAE

The past 15 months have been grim for Iranian businesses which trade with the outside world. America has tightened sanctions against Iran’s financial system; the European Union has put an embargo on its oil; and international traders are wary of dealing with the country.Iranian businesses are used to fighting for survival. The Islamic Republic has faced sanctions of one sort or another since its creation in 1979. Parts for Iran’s ageing civilian airliners trickle in from the black market. A host of sanctioned products, from industrial chemicals to anti-aircraft missiles, come from China. Almost any good can be found in Iran, at a price.  Amir, a manager in a mining business, says he regularly meets British and German suppliers in Turkey, to obtain the most advanced equipment to tap Iran’s mineral wealth. “Foreign firms are terrified of doing something illegal, but in the end they are businessmen,” he says. “The Europeans send our cargoes to Dubai, documented as the final destination. From there we are in charge.” Amir uses Gulf middlemen to change the documents, for a fee of 3-5%, before the goods are shipped to Bandar Abbas, Iran’s largest port.

Because few international banks deal with sanctioned Iranian institutions, Iranian importers have to find roundabout ways of paying suppliers. Amir uses a network of Iranian go-betweens who own companies in South Africa and Malaysia to pay his suppliers’ Western banks. He says 30% of his revenues are spent on avoiding sanctions—not counting the time involved.

The sanctions have hit Iran’s oil industry the hardest. Iran’s government depends on oil for more than half of its revenue, but exports have fallen and grown more volatile. The country’s total production is a quarter less than the 3.6m barrels per day it pumped in 2011.  One way of keeping sales going is to dress up Iranian oil as Iraqi. Another trick is to move Iranian oil onto foreign tankers on the open sea. Once crews have switched off their ships’ tracking beacons, this is all but undetectable. The oil is sold at a discount. Fujairah, in the United Arab Emirates (UAE), is a big market for Iranian oil. Business is down, says Sajad, but European firms still trade with Iran, using Swiss subsidiaries which broker deals with the Iranians and collect the crude using tankers under the flag of a third country.

The sanctions have been a fillip for the few institutions still handling Iranian money. One foreign bank charges 5% on cash moving in or out of Iran, says an Iranian shipping source. Normal business rates are a fraction of a percent, but Iranian firms have little choice.

Sometimes the fear of sanctions is more effective than the sanctions themselves. A customer in the UAE owed $1.3m to Sajad’s shipping firm but would only send it in costly small instalments. Sajad flew to the Gulf to pick up the balance in cash. “I was nervous about what I would say to customs from either country if they checked my suitcase,” he says. “I decided I would tell the truth. I am not a criminal.” But no one did.

Dodging sanctions in Iran: Around the block, Economist, Mar. 3, 2013, at 68?

Sanctions Against Iran and the Afghan Loophole

How Iran Copes with Actions?

The Battery of Europe; Swiss hydroelectricity is not Green

Mauvoisin dam, Switzerland

Swiss energy companies are determined to turn the country into a ‘battery for Europe’. Vast investments are made in big-scale water power projects. But it is not certain they will eventually pay off.  With the decision for a nuclear shutdown, the spotlight in Switzerland and Germany has switched to renewable energy sources. In Germany there’s a massive boost to solar and wind energy production, while Switzerland’s energy companies focus on increasing their storage capacities in the Alps.  About 11 percent of Europe’s electricity flows through Switzerland. The Swiss electricity industry stresses the advantages of the country’s central location in Europe and its topography. On the European energy map, Swiss mountain lakes could function as a huge battery for unsteadily generated renewable energy, and generate high revenues.

Natural and artificial mountain lakes are an essential component of Switzerland’s energy supply. Water power makes up 57 percent of the country’s electricity production. Some of these lakes aren’t just natural water reservoirs though, but serve as basins for pumped-storage hydro power plants (PSPs).  The system is simple and has long been a good business. Throughout the day, cheap, spare electricity is bought on the market and then used to pump water from a lower reservoir to a basin further up the mountain. At times when demand for electricity is high, stored water is released and drives turbines that produce electricity, which can then be sold on the market for a higher price.  Currently, 11 such plants are running in Switzerland with a combined 1400 megawatt capacity. Three other projects are under construction, to increase Swiss pumped-storage capacity to 3500 megawatts by 2017. Two more PSPs are being planned: ‘Grimsel 3′ at the Grimsel Pass in the Bernese Alps and ‘Lago Bianco’ at the Bernina Pass in Grisons.

“The symbiosis between nature and technology has defined the character of this landscape,” writes the Grimsel region’s tourism agency. Ernst Baumberger, press officer at the regional energy company KWO looks at Grimsel through two lenses: while praising the region’s beauty, Baumberger points out that a plenty of precipitation, glaciation, rock as building ground and the immense altitude difference make it ideal for water power use. KWO put its first power plant at Grimsel in operation 80 years ago.  The company recently was licenced to implement its 1.2 billion Swiss francs project ‘KWOplus’, including the construction of a second PSP (‘Grimsel 3′). The plant will have a 660 megawatt capacity, which is about the power of an average Swiss nuclear plant. The plan is controversial, both politically and economically.

“Switzerland doesn’t need any additional PSPs. There’s neither a lack of batteries, nor a grid stability problem,” argues Jürg Buri, managing director of the Swiss Energy Foundation (SES). He says that no country operates as many flexible power stations as Switzerland….Environmental organisations say that mainly cheap electricity from coal and nuclear plants is used for the pumping and that during the process, about a quarter of the energy is lost. Even worse, at windy times, PSPs keep coal and nuclear plants running.  There’s nothing green about pumped-storage hydroelectricity anyway. “If today’s PSPs were supplied with clean energy, that business would be unprofitable,” Buri says. “The revenues of the peak current wouldn’t make up for the purchase price and the energy lost for pumping.”

According to the licence, KWO is obliged to run Grimsel 3 with as much renewable energy as “economically and technically possible.” No fixed share was defined however. KWO’s Baumberger stresses that in the long term, the company’s PSPs should run solely with green electricity. “However, the primary criteria will remain the profitability,” he adds.  While the energy company praises Grimsel 3 as an important contribution to the security of energy supply for the country, Jürg Buri claims that the pumped-storage business further strains transmission lines. “In fact, to run Grimsel 3, even more lines would have to be built, something which people often forget about….

The Swiss Association for Water Management (SWV) views investments in PSPs as risky and their profitability as volatile. At the Bernische Kraftwerke (BKW), which holds half of KWO’s shares and manages electricity trade, the media officer declines to comment on the prospects of pumped-storage hydroelectricity…

In contrast to environmental organisations, KWO’s Baumberger remains optimistic. He stresses that in the light of booming wind and solar energy in Europe, the demand for further storage capacities will grow. “What Switzerland so far offers in terms of energy storage is nothing but a drop in the ocean.”  While opinions on the future of Swiss pumped-storage hydroelectricity differ sharply, one thing seems sure: the industry’s prospects lie in the hands of European, not Swiss politicians and businessmen.

Excerpts from Ray Smith, Swiss Battery May Lose Power, IPS, Dec. 8, 2012

Safety of Nuclear Fuel at Pools: From Fukushima to Yucca Mountain

An Entergy Corp.  unit sued the U.S. for $100 million alleging the government breached a contract for disposal of nuclear waste at two plants in Michigan.  Entergy Nuclear Palisades LLC, owner of the Palisades Nuclear Plant and the Big Rock Point plant, alleged yesterday that the Energy Department collected fees under a 1983 contract without ever starting to dispose of the radioactive material. The suit is in the U.S. Court of Federal Claims in Washington.  Entergy and a previous owner of the shuttered Big Rock Point plant “have fully complied with all their fee payment obligations under the contract,” according to the complaint. “The government, however, has failed to perform its reciprocal obligation to dispose of spent nuclear fuel, and currently has no plan to meet these obligations.”

Entergy’s lawsuit is the latest legal challenge stemming from the federal government’s failure to create a central, long- term facility to store nuclear waste.  Most nuclear-plant owners continue to store spent nuclear fuel onsite despite contributing for decades into a fund meant to finance a central waste depository.

The U.S. Nuclear Regulatory Commission is freezing U.S. operating licenses for at least two years as it reassesses waste-storage risks and strategies in response to a June 8 order by the U.S. Court of Appeals in Washington.  See US Court of Appeals

Entergy Corp., based in New Orleans, is the second-largest owner of nuclear plants in the U.S.  Through June 30, Entergy and Consumers Energy Co., the former owner of Big Rock Point, have paid about $274 million into the fund under the contract, the company said. Charles Miller, a Justice Department spokesman, declined to comment on the lawsuit.

The case is Entergy Nuclear Palisades LLC v. U.S., 12-cv- 1641, U.S. Court of Federal Claims (Washington).

By Tom Schoenberg and Julie Johnsson, Entergy Sues U.S. for Failure to Dispose of Nuclear Waste, Bloomberg, Sep 27, 2012

Nuclear Protests in India, NGOs and Foreign Money

This week police in Kudankulam, in southern Tamil Nadu, fired at thousands of anti-nuclear protesters on the beach, killing a fisherman. The locals were opposing a new, Russian-designed, 2,000MW nuclear plant, India’s biggest, which is now being filled with fuel. The 2004 Indian Ocean tsunami killed over 10,000 Indians. Now fears grow of another big wave that could bring a Fukushima-style disaster.  Protesters also claim harassment, saying officials have slapped sedition notices against 8,000 who have dared speak out. Opposition has flared before. The state’s chief minister, Jayaram Jayalalitha, once backed the protests but has now swung in favour of the plant—perhaps betting that anger over power shortages trumps anti-nuclear outbursts.

The reaction of the national government, under the prime minister, Manmohan Singh, has been mixed. Committees of investigation called the plant safe. The High Court in Chennai heard, and ruled against, a petition by locals over safety. The Supreme Court will hear an appeal.  The government’s argument that politicians not protesters should decide the country’s energy mix is reasonable. But, twitchy at criticism, it veered off in suggesting opponents merely did the bidding of a foreign hand. Mr Singh, in an interview with a science magazine in February, blamed protests on NGOs, “mostly I think based in the United States”. A tough new law is in force, severely restricting foreign money going to local NGOs.  Mr Singh’s frostiness is best understood in the context of America’s moans that a civil-nuclear deal signed with India has not led to American investors getting energy contracts. Strict liability laws scare its private investors, whereas government-backed ones, such as Russians, feel more secure. Could Mr Singh be implying that American activists are stirring the trouble in Kudankulam because the plant is Russian-built?

Nuclear Power in India: The Kudankulam conundrum, Economist, Sept. 15,2012, at 39

The Nuclear Proliferation Potential of Laser Enrichment

The following is being released by Physicians for Social Responsibility:  The U.S. Nuclear Regulatory Commission (NRC) is putting U.S. nuclear non-proliferation policy at risk if it decides not to require a formal nuclear proliferation assessment as part of the licensing process for a uranium laser enrichment facility in Wilmington, N.C.  That’s the message from 19 nuclear non-proliferation experts in a letter sent today asking the NRC to fulfill its statutory responsibility to assess proliferation threats related to the technologies it regulates. The letter is available online at http://www.psr.org/nrcassessment.

Global Laser Enrichment, LLC, a joint venture of General Electric (USA), Hitachi (Japan) and Cameco (Canada), has applied for a license to operate a laser enrichment facility in Wilmington, North Carolina, based on Australian SILEX technology. The NRC licensing review schedule sets September 30, 2012 as the date of license issuance.  One of the authors of the letter, Catherine Thomasson, MD, executive director, Physicians for Social Responsibility, said:“It is a widely shared view that laser enrichment could be an undetectable stepping-stone to a clandestine nuclear weapons program. To strengthen U.S. policy and protect the U.S. and the world from nuclear proliferation, the NRC should systematically and thoroughly assess the proliferation risks of any new uranium enrichment technology BEFORE issuing a license allowing their development.”  Dr. Ira Helfand, co-president of International Physicians for the Prevention of Nuclear War, said: “If the U.S. is going to have moral authority in dealing with proliferation threats in other nations, such as Iran, it must do a better job of taking responsible steps in relation to proliferation threats in our own backyard. In fact, a persuasive case can be made that laser enrichment technology requires even more immediate action, since this is a known danger that can be addressed directly by the NRC under its existing regulatory authority.”

In the letter, the experts note that the NRC has no rules or requirements for a nuclear proliferation assessment as part of this licensing process. The experts are concerned that the Commission is falling short in its duties since a 2008 NRC manual on enrichment technology clearly states that laser enrichment presents “extra proliferation concerns due to the small size and high separation factors.”

Previous letters to the NRC asking for a proliferation assessment, signed by many of today’s signatories, have been rebuffed. NRC is on record stating that the National Environmental Policy Act does not require preparation of a proliferation assessment. However, a March 27, 2012 memorandum from the Congressional Research Service clearly concludes that the NRC has legal authority “to promulgate a regulation” requiring a proliferation assessment as part of the licensing process.  Both the Nuclear Non-Proliferation Act of 1978 and the Atomic Energy Act are cited by the experts as statutory basis of the NRC’s responsibility to assess proliferation risks.

Excerpt, 19 Experts: Nuclear Proliferation Risks Of Laser Enrichment Require Fuller NRC Review, PRNewswire, Sept 5, 2012

Proliferation Risks of Laser Enrichment

Laser Uranium Enrichment

Canada and its Nuclear Waste

Since the 1960s,  Canada’s nuclear power plants have generated more than two million bundles of highly radioactive used fuel. And they’re all still stored on the sites of the plants that produced them.But the pace of finding a site to store Canada’s most potent radioactive waste permanently is about to pick up.  Twenty Canadian communities have said they’ll consider volunteering to host the storage site.  That list is about to close. The Nuclear Waste Management Organization, whose job it is to find and build the site, will stop taking new names on Sept. 30, 2012.  The impending cut-off is ratcheting up the pressure on the technocrats charged with selecting a site; on the boosters who want to snare the multi-billion-dollar repository for their community; on the activists who harbour deep suspicions about safety; and on the aboriginal leaders who say they’ve been cut out of the process….

A fuel bundle for a Candu nuclear power reactor is about the size of a fireplace log. As of June 30, 2011, Canada had 2,273,873 used fuel bundles stored at its nuclear plants in Ontario, Quebec and New Brunswick.  Another 85,000 or so have been added since then.  In total, they’d fill about six NHL hockey rinks, stacked up as high as the boards.

The Nuclear Waste Management Organization, formed by the three electric utilities that run nuclear reactors, wants to bury the waste deep underground in caverns excavated from stable rock, where it can lie undisturbed forever.  The depth will probably depend on the site’s geology. A facility proposed to hold less-potent radioactive waste at the Bruce nuclear site near Kincardine will be 680 metres deep. By comparison, the CN Tower is 553 metres tall.  The NWMO is looking for a “willing” community to agree to take the $16-to-$24-billion project. The host community itself will decide how to define “willing.” Candidate communities will have multiple opportunities to withdraw if they get cold feet, the NWMO says.  As it moves through a nine-stage selection process, the NWMO hopes to have narrowed the field to one or two communities by 2015, then spend until about 2020 deciding on a specific site within the chosen community.  After that, it will take three to five years to do an extensive environmental assessment of the site. The proponents will also have to satisfy the Canadian Nuclear Safety Commission that their plan makes sense, and obtain a license to construct and operate the facility.  Then, it will take six to 10 years to build. The NWMO doesn’t expect the first bundles to be stored until 2035.  The plan is to seal the waste in sturdy, radiation-proof containers and store it deep in a stable rock formation where — even if the containers were to crack and leak — there’s be no danger of contaminating groundwater used by humans. (Although that’s the current strategy, the NWMO says it would consider a different plan if compelling evidence emerged that another technique is superior.)

Current designs call for surface buildings and facilities to cover about 100 hectares (250 acres), says the NWMO’s Michael Krizanc.  “As well, there may be a need to limit activities in the immediate area surrounding the surface facilities in order to meet regulatory or other requirements.”  Underground, the excavated caverns will cover an area of about 2.5 kilometres by 1.5 kilometres. That’s 375 hectares, or 930 acres.  “The NWMO would need to have rights to the land above the repository,” says Krizanc, but “alternative uses could be considered, with the community, for portions of the land.”….

Meanwhile in Saugeen Shores, a lively battle is under way as members of a citizens group dubbed save Save Our Saugeen Shores, or SOS, fights what they see as an attempt to impose the waste site on their community on the shore of the Great Lakes….SOS also worries that U.S. power plants might be able to force Canada to take U.S. nuclear waste in a Canadian waste site, through terms of the free trade agreement between the countries…..Up in Elliot Lake, contractors Stephen Martin and Marc Brunet can’t wait for the project to start….Elliot Lake has been identified with uranium since its founding, he shrugs: “We’re the uranium capital of the world…. This thing will be a tourist attraction. I think it’s the best thing that could happen.”

John Spears, Nuclear waste seeks a home, Toronto Star, Sept. 1, 2012

For the Fear of Iran: The Nuclear Renaissance in the Middle East

Saudi Arabia is pressing ahead with its ambitious plans to develop nuclear power to meet rising electricity demand and save oil for export.  But the outlook for other Arab states is less promising because of political turmoil and a lack of financial resources.  The Saudis have built a foreign assets cushion of around $500 billion from oil exports. It has used this immense wealth to buy its way out of trouble; for instance, heading off pro-democracy protests with massive social spending in recent years.  But, the Middle East Economic Digest observed, “a more serious set of challenges now faces the kingdom that threaten to be even more destabilizing.  “Inefficient and wasteful energy consumption, coupled with a rising population, is leading the kingdom to burn even more of its natural resources at home rather than selling them abroad and adding to the proceeds of the half-trillion-dollar cash pile.  “Unless action is taken, the kingdom could find it needs the oil price to be $320 a barrel by 2030 just to balance the budget,” the weekly, published in the United Arab Emirates, warned.  Nuclear power is seen as the solution. But, as MEED stressed, “time is of the essence.”

For one thing, Saudi Arabia and other Arab states, including the United Arab Emirates, Kuwait, Qatar and Egypt, have no wish to lag any further behind Iran and Israel in developing nuclear technologies.  In 2010, the King Abdallah Center for Atomic and Renewable Energy, known as KAcare, was established to oversee the gulf state’s nuclear program under its president, Hashim bin Abdullah Yamani, who was accorded ministerial powers.  KAcare consultant Ibrahim Babelli said in 2010 it took 3.4 million barrels of oil equivalent a day — known as boe/d — to power electricity generation. This is expected to more than double by 2028 to 8.3 million boe/d.

The aim of the Saudis’ $100 billion nuclear program is to achieve an electricity output of 110 gigawatts by 2032.  The Financial Times reports that in 2009, the latest data available, Saudi electricity capacity was 52GW from 79 power stations.  At least 16 nuclear reactors, each costing around $7 billion, are planned, with the first producing by 2019.  Some estimates state the kingdom, the world’s largest oil exporter, will burn as much as 1.2 million barrels of oil daily on electricity production, almost double the 2010 total, to meet domestic and industrial demand.  This is crucial, as the Saudis are driving to build an industrial infrastructure to sustain the economy when the oil fields run down. Some have already begun to decline.  For total reliance on nuclear power, Babelli says, 40-60 reactors would be needed by 2030. That’s four-six reactors per year from 2020.  “That’s stretching it,” he said. “The answer is an energy mix.”

That means fossil fuels will still be needed, probably as the primary energy source, while wind, solar and nuclear power capabilities are developed. KAcare is developing solar power projects that MEES estimates should produce 41GW within 20 years with geothermal and waste-to-energy systems providing 4GW.  The Emirates, which launched its nuclear energy program in 2009, is the most advanced in the Arab world, with Saudi Arab running second.  The United Arab Emirates’ $30 billion program — $10 billion more than originally planned — is smaller in scale than that in Saudi Arabia.  Both states benefit from political stability and vast financial reserves. Other regional states are less fortunate.

Bahrain, Qatar, Kuwait, Egypt and Jordan all have announced plans to invest in nuclear energy to crank up electricity generation but all have lagged behind or scrapped their programs because of lack of funds or foreign investment.  “Kuwait has the cash,” MEED reported, “but it’s been through eight governments in the past six years.”  Sunni-ruled Bahrain, an island state neighboring Saudi Arabia, “continues to face destabilizing protests by its majority Shiite population and its budget is already in deficit.”  Egypt remains convulsed by the political turmoil that ensued following the February 2011 overthrow of President Hosni Mubarak, its economy sagging dangerously.  In Jordan, heavily reliant on foreign aid, parliament recently scrapped nuclear plans as “hazardous and costly.”  Failure to start boosting electricity generation for burgeoning populations in the coming decades almost certainly will mean more political upheavals.

Saudis, Emirates push nuclear power plans, UPI,July 26, 2012

See also the Quiet Nuclearization of the Middle East

Nuclear Race in the Middle East

Litigating the Future of Nuclear Energy: United States

Until this past February 2012, the last time new nuclear power construction was approved in the United States was in 1978. But when the U.S. Nuclear Regulatory Commission (NRC) approved two proposed nuclear reactors at Plant Vogtle near Augusta, Georgia, on February 9 in a four to one vote, it took less than a week for the legal action to begin.  Nine environmental groups filed a lawsuit in the U.S. Court of Appeals for the District of Columbia Circuit on February 16. The concerns at the heart of their challenge – safety issues and the Fukushima disaster – were similar to those of NRC Chairman Gregory Jaczko, the sole dissenter in the commission’s vote.  Jaczko argued that Southern Company, whose company Southern Nuclear operates the Vogtle plant, had not proved it would take steps necessary to ensure the reactors could withstand an earthquake like the one that occurred in Fukushima, Japan in March 2011.  “I simply cannot authorise issuance of these licenses without any binding obligation that these plants will have implemented the lessons learned from the Fukushima accident before they operate,” he wrote.

The groups are “working to challenge the NRC’s approval of the reactors because they fail to take into account public comments received by the agency concerning the proposed reactors’ security risks, following the Fukushima disaster”, Sara Barczak, a program director at the Southern Alliance for Clean Energy, one of the groups who filed the lawsuit, told IPS.  The other groups include the Blue Ridge Environmental Defence League, Centre for a Sustainable Coast, Citizens Allied for Safe Energy, Friends of the Earth, Georgia Women’s Action for New Directions, Nuclear Information and Resource Service, Nuclear Watch South and North Carolina Waste Awareness and Reduction Network.  The Turner Environmental Clinic at Emory University Law School has been assisting with much of the legal work on the case.

A related legal challenge regarding the AP1000 reactor design by Westinghouse Electric Company, which would be used in the new Vogtle reactors, argued that the approval of the reactor design also failed to take into account the Fukushima disaster.  Those two challenges have been consolidated into one, and the groups recently filed a motion to stay further construction of the new reactors at Vogtle, which they hope will be heard within a month or so.  “We still have concerns about the ability of that reactor design to deal with seismic issues such as earthquakes….The National Environmental Policy Act (NEPA) requires that any agency has to recalibrate and reissue an Environmental Impact Statement considering the information,” Barczak said.  “They would have had to do reassessments of doses to the public, reevaluating doses to site workers and the community, the evacuation plan, how the operator would handle a multi-unit meltdown,” she explained. “It would be a fairly substantial review.”…

Excerpt, Matthew Cardinale, Legal Challenges Counter Plans for New Nuclear Reactors, IPS, April 14

State of the World: Nuclear Waste

With more than 400 nuclear power plants in 32 countries, nuclear waste disposal is no longer an afterthought…  No nation yet has opened a permanent geological repository. But plans are well advanced in some countries, notably Finland and Sweden.  Canada plans to open a deep repository for high-level waste around 2035, though much work lies ahead, including finding a suitable site. Transferring the estimated four million spent fuel bundles into the vault will take an additional 30 years…

In the United States, the Obama administration’s recent decision to cancel the 2015 opening of a repository at Yucca Mountain in Nevada’s remote desert country has left jittery and angry American nuclear power producers sitting on enormous amounts of spent fuel crammed into interim storage for an indefinite additional period. The country’s 104 commercial power reactors churn out more every day. Cancellation of the project, which cost an estimated $9 billion and involved more than 20 years of research, is widely considered to have been based on political, not technical, concerns.But so was the original siting process. Washington in 1987 unilaterally deemed the waste was going to Yucca without seriously considering other potential sites. Not surprisingly, Nevada citizens have railed against the top-down plan ever since.

If the government doesn’t bow to pressure and reverse its decision, U.S. nuclear waste planners will be going back to the drawing board for what promises to be another very prolonged and expensive exercise.

The World Nuclear Association says deep geological disposal is the preferred option for several other countries, too, including Argentina, Australia, Belgium, Czech Republic, Japan, Netherlands, Republic of Korea and Spain.

FINLAND: Olkiluoto, on the shore of the Gulf of Bothnia in western Finland, was chosen and excavation and construction was started in 2004 by Posiva Oy, a nuclear waste management company. The repository is named Onkalo. Scheduled to open in 2020, spent nuclear fuel packed in copper canisters will be embedded in bedrock at a depth of around 400 metres. Onkalo will be the world’s first permanent nuclear waste crypt.

FRANCE:  Almost 80 per cent of France’s energy comes from 59 nuclear power reactors…The French radioactive waste disposal agency, Andra, is designing a deep geological repository in clays at Bure in eastern France for its disposal, as well as long-lived intermediate level waste. Andra expects to apply for a construction and operating licence in 2014.

GERMANY:  In May, as the enormity of Japan’s Fukushima nuclear complex disaster became clearer, German Chancellor Angela Merkel promised to phase-out nuclear power from the country’s 17 reactors by 2020.  Like France, Germany reprocesses its waste — but at reprocessing facilities in France, Russian and Britain. The reprocessed waste is then shipped back to Germany and stored in a former salt mine in the northern town of Gorleben.  In 1979, Gorleben was selected as a temporary nuclear waste site, but the government recently resumed research to make it into a permanent storage site. In November, thousands of protesters clashed with police in an unsuccessful bid to halt a Gorleben-bound train of reprocessing waste from France.

RUSSIA: Used fuel from 27 reactors is reprocessed for plutonium. Four geological disposal facilities are planned to begin operation in 2025-2030.

INDIA: Spent fuel from 14 reactors is stored in pools, then reprocessed. A geological repository is planned but not sited.

SWEDEN: Forsmark, on the east coast of Uppland and site of a nuclear power plant, has been chosen, When open in 2023, it is to safely hold spent fuel 500 metres underground for 100,000 years.

SWITZERLAND: The country had been reprocessing its high-level waste abroad in France and Britain, but enacted a 10-year reprocessing moratorium in 2006. Spent fuel is now kept at the country’s five reactor sites.  Two sites are under investigation as possible locations for two national waste repositories, one for low- and medium-level waste and one for spent fuel.  In June, meanwhile, the country resolved not to replace any reactors and phase-out nuclear power by 2034.

BRITAIN: Used fuel from its 31 reactors is reprocessed and the vitrified waste is stored above ground for 50 years.  In 2003, the government established the Committee on Radioactive Waste Management to investigate options for a long-term management approach. In 2008, the committee recommended deep geological disposal, which the government endorsed.

Excerpts, By Ian MacLeod, The global nuclear waste race,The Ottawa Citizen December 20, 2011