Tag Archives: robotics

First Find then Erase Pollution

subcultron, image from https://ec.europa.eu/digital-agenda/en/news/bio-inspired-robots-will-examine-waters-venice

Subcultron is a swarm of at least 120 self-directing, underwater robots being developed by scientists in six countries to monitor Venice’s polluted waterways and transmit environmental data to government officials.The robots, shaped like fish, mussels, and lily pads to mimic the species’ hydrodynamics, carry sensors to monitor water conditions like temperature and chemical composition…The swarm communicates via the Internet-capable lily pads…
The robots use lithium ion batteries and solar cells for power. (Yes, enough sunlight gets through.)Some of the robots carry cameras. Others have electrodes that allow them to “see” by measuring objects crossing the electric fields they generate.Using wireless signals, human monitors can take over from the swarm’s AI software if something goes wrong. The European Commission has granted the project €4 million ($4.4 million).
Thomas Schmickl, the inventor, …..plans to build robot swarms that can monitor the oceans or even faraway moons that have water.

Excerpts from Innovation Subcultron, Bloomberg Business Week, Jan. 28, 2016

Gliders: the robot submarines

Ten years ago there were fewer than 30 gliders in the world, all built either by academic institutions or the armed forces. Now there are at least 400, and most are made by one of three firms: iRobot, whose product is called, simply, Seaglider; Teledyne Webb, which manufactures the Slocum Glider (named after Joshua Slocum, the first man to sail solo around the world); and Bluefin Robotics (the third member of the Massachusetts sea-glider cluster, based in Quincy), which sells the Spray Glider. Broadly speaking, these machines have three sorts of application: scientific, military and commercial.

At the moment, science rules the roost. For cash-strapped oceanographers, gliders are a blessing. Their running costs are negligible and, though buying one can cost as much as $150,000, that sum would purchase a mere three days of, say, a manned trip to the Southern Ocean.  Gliders, moreover, give a continuous view of what is going on, rather than the series of snapshots yielded by equipment lowered from a vessel at the surface. Besides tracking pollution, watching volcanoes and measuring icebergs, they are following fish around, monitoring changing temperatures in different layers of seawater and mapping the abundance of algae. The Ice Dragon, a modified Seaglider operated by the Virginia Institute of Marine Science, has explored under the Antarctic ice shelf, and another modified Seaglider, the Deepglider, can plumb the depths down to 6km (20,000 feet). Teledyne Webb’s Storm Glider, meanwhile, lurks in hurricane-prone areas, bobbing up to take readings during extreme weather.  Gliders are also quiet—so quiet that, as one researcher puts it, you can use them “to hear a fish fart”. This was demonstrated by a recent project run by the University of South Florida, in which a glider successfully mapped the locations of red grouper and toadfish populations on the West Florida Shelf from the noises the fish made.

Military applications are growing, too. America’s navy, for example, has ordered 150 gliders from Teledyne Webb’s sister company, Teledyne Brown, for what it calls its Littoral Battlespace Sensing-Glider programme. To start with, these gliders will be used individually, to measure underwater conditions that affect things like sonar. Eventually, the plan is to link them into a network that moves around in a co-ordinated manner.  Gliders are also ideal for gathering intelligence. Having no propellers and no engine noise, they are difficult to detect. They can be delivered by submarine, and can lurk unseen for as long as is necessary. Any shipping, whether on the surface or under it, which passes near a glider can be detected, identified and pinpointed without it realising it has been spotted. Indeed, the American navy is now evaluating a design called the Waveglider, made by Liquid Robotics of Sunnyvale, California, for submarine-detection work.

The third use, commerce, seems, at the moment, to be the smallest—though that may be because the companies involved are keeping quiet about what they are doing. But Joe Dyer, the chief strategy officer at iRobot, thinks oil-and-gas exploration will be a big market for the firm’s gliders, because they can survey large areas of seabed in detail at low cost.  ACSA, a French glider firm, has a similar market in mind. In March it launched the SeaExplorer, a streamlined, wingless glider with a speed of one knot—twice as fast as the American competition. According to Patrice Pla, ACSA’s marketing manager, SeaExplorer’s lack of wings reduces the chance of its getting tangled in nets. Its payload bay, meanwhile, is designed to take interchangeable modules so that it can hold whatever equipment is required. That means customers do not have to buy different gliders for different applications.

Nor is ACSA the only non-American in the field. A glider called Sea Wing, for example, has been developed at the Shenyang Institute of Automation, in China, by Yuan Dongliang of the country’s Institute of Oceanography. It was tested last year and operated successfully in the western Pacific at depths of up to 800 metres. Meanwhile, at Tianjin University, a team of glider researchers is trying to improve the machines’ endurance. They are testing fuel cells instead of batteries and are also working on the idea of powering them with a thermal engine that draws its energy from the differences in temperature between seawater at different depths.

Japanese researchers, too, are building gliders. At Osaka University, Masakazu Arima is involved in several glider projects. One is a small, low-cost version called ALEX that has independently movable wings. Another is a solar-powered device called SORA. Though SORA has to surface to recharge, its requirements are so modest that it does not take long to do so. It can travel underwater for months, surface for a few days, then carry on. It can therefore stay at sea indefinitely.

Dr Arima’s greatest interest, though, is like America’s navy’s: that his gliders should collaborate. His plan is to deploy 1,000 of them in a network that surveys and measures the oceans. If it works, the single spies of sea-gliding really will have become battalions, and the ocean’s fish will find themselves shadowed by shoals of mechanical counterparts.

Exploring the Oceans:20,000 colleagues under the sea, Economist, June 9, 2012, at 84

See also Underwater drones

How to Control a Robotic Arm by Thought: DARPA, the Brain and the Computer

A groundbreaking United States Defense Advanced Research Projects Agency (DARPA) project has been awarded to the University of Melbourne in brain-computer interfacing.  In the United States alone, nearly two million people suffer from various disorders where control of limbs is severely impaired. In many of these patients, however, the portion of the brain responsible for movement remains intact, and it is disease and trauma to the spinal cord, nerves and muscles that limit mobility, function and independence. For these people, the ability to restore lost control at even a rudimentary level could lead to a greatly improved quality of life.

Dr Thomas Oxley, neurology trainee, Royal Melbourne Hospital has coordinated a multidisciplinary team, combining personnel from the Department of Medicine, and the Department of Electrical and Electronic Engineering), the Royal Melbourne Hospital and the Howard Florey Neurosciences Institute, who have combined extensive research experience in the development of medical bionics, working with intravascular stents, experimentation on large animal models and electrophysiological recordings.

This innovative, minimally invasive approach of inserting electronic systems necessary to reliably acquire and transmit (central nervous system) CNS motor control information is a revolutionary advancement in the area of cortical signal processing….Tthis method would greatly enhance the success of the device by enabling the electrodes to be accurately positioned over the cortical area of interest. The ability for multiple implants to be inserted would allow both quick and reliable control of prosthetic attachments as well as the potential for feedback from prosthetic devices back to the cortex

“DARPA have committed to the development of a neural interface capable of controlling a prosthetic limb by thought,” says Principal Investigator Dr Thomas Oxley.

*DARPA Award No. N66001-12-1-4045

Excerpt, $1,067,200 million DARPA project awarded to the University of Melbourne, Research News University of Melbourne, June 2012