Tag Archives: spaceplane (XS-1)

The First to Shoot…from Space

image from NASA.

North Korea’s preparations to launch a more advanced reconnaissance satellite with a high-resolution scanning capability threaten to push Asia’s space race deeper into the military theater.  The Kwangmyongsong-5 Earth-exploration satellite, likely to be packaged with a separate communications satellite, will technically allow North Korea to transmit data down to the ground for the first time, thus offering real-time intelligence for potential ballistic-missile strikes.

This is well short of the technological capacity needed to deploy orbital weapon systems, but will cause some unease among Asian power-brokers China, Japan and India as they pour money into the last strategic frontier of outer space.  Space programs in Asia have largely been driven by competition for the US$300 billion global commercial transponders market, which is expected to double by 2030 if demand holds.

A shift toward miniature satellites of less than 20 kilograms, mostly used by governments and smaller companies, has drawn nations as diverse as Singapore, Pakistan, Vietnam and South Korea into a field led by Japan and China, with India a more recent player.

Japan placed two satellites in different orbits for the first time on December 2017, displaying a technical edge aimed at reducing launch costs for commercial clients. India announced this week that it had successfully tested a GSLV Mark III rocket that can lift a 4-ton satellite into orbit. In 2017, it managed to launch 104 satellites of varying sizes in just one operation. China has loftier ambitions, including a lunar landing some time in 2018, after sending a roving module down a steep crater on the moon in 2013. About 40 Chinese launches are likely in 2018, mainly to boost communications.  India and Japan are both locked in undeclared space races with China that go well beyond commercial rivalries and have muddied the debate over North Korea’s shadowy aims….

“Militarization” refers to any systems that enhance the capability of forces in a conventional setting, such as intelligence, communications and surveillance. “Weaponization” is the physical deployment of weapons in outer space or in a ground mode where they can be used to attack and destroy targets in orbit.  The United Nations Treaty on Outer Space prohibits the deployment of weapons of mass destruction in space, but the US has blocked efforts to ban space weapons outright. In 2007, Washington said it would “preserve its rights, capabilities, and freedom of action in space.”

Excerpts from  ALAN BOYD,  Asia’s Space Race Gathers Pace, Asia Times, Jan. 6, 2017

The Quiet Revolution in Space

Orbits around earth. Black dots indicate geostationary orbit (GEO) Blue color indicates low earth orbit (LEO). Image from wikipedia

National security critically depends on space, and the Defense Advanced Research Projects Agency (DARPA)is focused today on creating the capabilities needed to help make that environment a real-time operational domain, DARPA Director Dr. Arati Prabhakar…

“The questions we ask ourselves at DARPA about the space domain … is what would it take to make the space domain robust for everything that we need militarily and for intelligence, and what would it take to make space a real-time operational domain, which it’s not at all today,” the director said, noting that many other nation-states now are active in orbit and space is a domain where conflict is becoming a real possibility.

Through a national security lens, she added, nothing needed from an intelligence or military perspective can be done effectively without access to space. Something as simple as navigation completely depends on GPS in nearly every part of the world and in every operating regime.

In an era of declining budgets and adversaries’ evolving capabilities, quick, affordable and routine access to space is increasingly critical for national and economic security. Today’s satellite launch systems require scheduling years in advance for a limited inventory of available slots and launches often cost hundreds of millions of dollars each. The Defense Advanced Research Projects Agency created its Experimental Spaceplane, or XS-1, program to help overcome these challenges and reduce the time to get capabilities to space. DARPA artist-concept graphics  “Because of the demands on launch, from the day you know you have to put an asset on orbit to the time you can plan on a launch today is still unacceptably long,” Prabhakar said.

Commercial capabilities will help, she added, “but if in a time of war we imagine if we could go to space not in a month or next week but tomorrow, think about how that would completely change the calculus for an adversary that’s thinking about [using an antisatellite] weapon to take out one of our satellites

”With that ambition in mind, DARPA is now starting Phase 2 of its Experimental Spaceplane, or XS-1.“It’s a reusable first stage that’s designed to be able to put 3,000 or 5,000 pounds into low earth orbit … at a very low cost point — a few million dollars — but very significantly the objective on the DARPA program is by the end of the program to fly that spacecraft 10 times in 10 days,” Prabhakar said, “something that’s inconceivable with any of the spacecraft we have today.”

A second piece of the puzzle is what can be done in orbit, she added, referring to low earth orbit, or LEO, an orbit around Earth whose altitude is between 99 and 1,200 miles.

“We’re doing some amazing work with geo[synchronous]-robotics and rethinking [geostationary Earth orbit]-architectures once you have an asset that would allow you to extend the life or do inspection or simple repairs at GEO, which is something you can’t do today.  GEO [geostationary orbit]is a stable region of space 22,370 miles from Earth.  And because GEO is a stable environment for machines — but hostile for people because of high radiation levels — DARPA thinks the key technology there is space robotics.  DARPA’s Phoenix program seeks to enable GEO robotics servicing and asset life extension while developing new satellite architectures to reduce the cost of space-based systems.

The program’s goal is to develop and demonstrate technologies that make it possible to inspect and robotically service cooperative space systems in GEO and to validate new satellite assembly architectures. Phoenix has validated the concept that new satellites could be built on orbit by physically aggregating “satlets” in space, according to DARPA.

Satlets are small independent modules that can attach together to create a new low-cost, modular satellite architecture, DARPA says. Satlets incorporate essential satellite functionality — power supplies, movement controls, sensors and others — and share data, power and thermal management capabilities. DARPA now is working to validate the technical concept of satlets in LEO [Low earth orbit an orbit around Earth whose altitude is between 99 and 1,200 miles.]

Excerpts from  Cheryl Pellerin Director: DARPA Space Projects Critical to Shifting Trajectories , US DOD News, Nov. 22, 2016

 

Hypersonic Weapons

space shuttle. Image from wikipedia

Payloads on hypersonic aircraft, whether they are weapons or sensors, could reach their destination within minutes, rather than hours, said Mark Lewis, former chief scientist of the Air Force and now director of the Science and Technology Institute at the Institute for Defense Analyses, a federally funded research-and-development center.  Hypersonic speed is generally defined as beginning at Mach 5, which is the point where aerodynamic heating caused by the speed of the vehicle cutting through the atmosphere becomes a factor.

The Air Force concluded its successful X-51 WaveRider program last year. The final test had the missile-like aircraft flying at Mach 5.1 for about 200 seconds.  Meanwhile, the Army is testing the advanced hypersonic weapon, a missile designed for vertical launch. It suffered a failed test seconds after takeoff in August 2014, but that was caused by a faulty booster, not the missile or hypersonic technology itself, Lewis noted….

Hypersonic technology could be seen as a follow-on to stealth, Lewis said. Even if an aircraft has that kind of technology, it doesn’t mean it is invisible, he said. Adversaries are growing better at spotting stealthy aircraft, he said. Speed might compensate for that, he said. “If I can fly really fast, it makes it harder to act against me. It doesn’t make it impossible. But it makes it harder.”

Top Air Force leaders are indicating that they want to move hypersonic technology to the next level.  Air Force Chief of Staff Gen. Mark Welsh and Secretary Deborah Lee James in the document “America’s Air Force: A Call to the Future,” said hypersonic development was number one on the service’s list of top five technology priorities.  [T]the Air Force sees hypersonic weapons as a potential means to break through anti-access/area-denied battlefields where adversaries have robust defenses.

The Air Force will team with the Defense Advanced Research Projects Agency on two new hypersonic programs, he said. The first will be a cruise missile called HAWC, the hypersonic air-breathing weapons concept. The other is called tactical boost glide, which will accelerate an aircraft to Mach 5 plus speeds, then let it glide to its target.

Similarly, space planes could deliver payloads in minutes. The reusable space plane concept has been proposed many times over the years, and received a new lease on life when DARPA awarded three contracts to Boeing, Masten Space Systems and Northrop Grumman to study the idea of a two-stage launch system that could rapidly place 3,000 to 5,000 pounds into orbit. The Air Force has never given up on that idea, as evidenced by the new DARPA initiative, Lewis said.  Space planes have been talked about for decades, Lewis said. There have been many starts and stops in developing the concept, he added.

NASA’s space shuttle was originally conceived as a vehicle that could rapidly lift payloads into space at low cost, and be flexible and responsive. It never lived up to that promise.

The DARPA experimental spaceplane (XS-1) program envisions a reusable aircraft that could be launched from a mobile platform, and return 10 times within 10 days. It would employ a reusable first stage that would fly to Mach 10 at a suborbital altitude. At that point, one or more expendable upper stages would separate and deploy a satellite into low-Earth orbit.  While a space plane in low-Earth orbit could potentially be used as a weapon, it would more likely be employed as a means to rapidly replace satellites that have been damaged in a space war, or to place sensors over regions where there are currently no assets, Lewis said….

Meanwhile, more akin to the space shuttle than the DARPA concept for the space plane, the Air Force continues to use the X-37B, a top-secret orbiter that also glides to Earth. One has been in orbit since October 2012. The Air Force has repeatedly denied that it has, or is intended to be, weaponized. What its exact mission is remains classified

Excerpts from Stew Magnuson . Hypersonic Weapons Can Defeat the of Time, Distance , National Defense Magazine. November 2014

see also Falcons