Tag Archives: US Defense Advanced Research Projects Agency

The Subterraneans

subway NYC

From the DARPA website:

Underground settings are becoming increasingly relevant to global security and safety. Rising populations and urbanization are requiring military and civilian first responders to perform their duties below ground in human-made tunnels, underground urban spaces [e.g. mass transit, water infrastructure] and natural cave networks. Recognizing that innovative, enhanced technologies could accelerate development of critical lifesaving capabilities, DARPA today announced its newest challenge: the DARPA Subterranean Challenge.

The DARPA Subterranean or “SubT” Challenge aims to explore new approaches to rapidly map, navigate, and search underground environments. Teams from around the world will be invited to propose novel methods for tackling time-critical scenarios through unknown courses in mapping subsurface networks and unpredictable conditions, which are too hazardous for human first responders.

“One of the main limitations facing warfighters and emergency responders in subterranean environments is a lack of situational awareness; we often don’t know what lies beneath us,” said Timothy Chung, program manager in DARPA’s Tactical Technology Office (TTO). “The DARPA Subterranean Challenge aims to provide previously unimaginable situational awareness capabilities for operations underground.”

“We’ve reached a crucial point where advances in robotics, autonomy, and even biological systems could permit us to explore and exploit underground environments that are too dangerous for humans,” said TTO Director Fred Kennedy.“Instead of avoiding caves and tunnels, we can use surrogates to map and assess their suitability for use. Through the DARPA Subterranean Challenge, we are inviting the scientific and engineering communities—as well as the public—to use their creativity and resourcefulness to come up with new technologies and concepts to make the inaccessible accessible.

Excerpts from DARPA Subterranean Challenge Aims to Revolutionize Underground Capabilities, Dec. 21, 2017

Advertisements

DARPA Pushes for Industrial Revolution in Genetic Engineering

From DARPA’s Website: Living Foundries

[Current State of Bio-engineering]

Current approaches to engineering biology rely on an ad hoc, laborious, trial-and-error process, wherein one successful project often does not translate to enabling subsequent new designs. As a result, the state of the art development cycle for engineering a new biologically manufactured product often takes 7+ years and tens to hundreds of millions of dollars (e.g. microbial production of artemisinic acid for the treatment of malaria and the non-petroleum-based production 1,3-propanediol).

[DARPA Goal]

Transforming biology into an engineering practice would enable on-demand production of new and high-value materials, devices and capabilities for the Department of Defense (DoD) and address complex challenges that today have no or few solutions.

The Living Foundries Program seeks to create the engineering framework for biology, speeding the biological design-build-test cycle and expanding the complexity of systems that can be engineered. The Program aims to develop new tools, technologies and methodologies to decouple biological design from fabrication, yield design rules and tools, and manage biological complexity through abstraction and standardization. These foundational tools would enable the rapid development of previously unattainable technologies and products, leveraging biology to solve challenges associated with production of new materials, novel capabilities, fuel and medicines. For example, one motivating, widespread and currently intractable problem is that of corrosion/materials degradation. The DoD must operate in all environments, including some of the most corrosively aggressive on Earth, and do so with increasingly complex heterogeneous materials systems. This multifaceted and ubiquitous problem costs the DoD approximately $23 Billion per year. The ability to truly program and engineer biology, would enable the capability to design and engineer systems to rapidly and dynamically prevent, seek out, identify and repair corrosion/materials degradation.

Accomplishing this vision requires an approach that is more than multidisciplinary – it requires a new engineering discipline built upon the integration of new ideas, approaches and tools from fields spanning computer science and electrical engineering to chemistry and the biological sciences. The best innovations will introduce new architectures and tools into an open technology platform to rapidly move new designs from conception to execution.  Performers must ensure and demonstrate throughout the program that all methods and demonstrations of capability comply with national guidance for manipulation of genes and organisms and follow all guidance for biological safety and Biosecurity.

A Broad Agency Announcement (BAA) solicitation for phase one, Advanced Tools and Capabilities for Generalizable Platforms (ATCG), closed in November, 2011. The BAA called for the development of the advanced, translatable tools and capabilities that will make up an end-to-end technology platform for rapidly, safely and predictably engineering biological production systems. The goals of these advanced tools and capabilities are to compress the biological design-build-test cycle by at least 10x in both time and cost while increasing the complexity of the systems that can be designed and executed by orders of magnitude. These advancements should enable the ability to rapidly design and build new systems to create novel capabilities and to address complex challenges.

See Amyris

System F6: DARPA and Fractionated Satellites

System F6 seeks to demonstrate the feasibility and benefits of a satellite architecture wherein the functionality of a traditional “monolithic” spacecraft is delivered by a cluster of wirelessly-interconnected satellite modules capable of sharing their resources and utilizing resources found elsewhere in the cluster. Such architecture enhances the adaptability and survivability of space systems, while shortening development timelines and reducing the barrier-to-entry for participation in the national security space industry.

The program is predicated on the development of open interface standards—from the physical wireless link layer through the network protocol stack, including the real-time resource sharing middleware and cluster flight logic—to enable the emergence of a space “global commons” which would enhance the mutual security posture of all participants through interdependence. A key program goal is the industry-wide promulgation of these open interface standards for the sustainment and development of future fractionated systems and low-cost commercial hardware for the sustained development of future fractionated satellite systems beyond the System F6 demonstration.

See DARPA

Contractors include:  Boeing, Lockheed Martin, Northrop Grumman, and Orbital Sciences